Finding the constant in bacterial communication

Jul 07, 2009
On the left is Anand Pai and on the right is Lingchong You of Duke University. Credit: Duke University Photography

The Rosetta Stone of bacterial communication may have been found.

Although they have no sensory organs, can get a good idea about what's going on in their neighborhood and communicate with each other, mainly by secreting and taking in chemicals from their surrounding environment. Even though there are millions of different kinds of bacteria with their own ways of sensing the world around them, Duke University bioengineers believe they have found a principle common to all of them.

The researchers said that a more complete understanding of communication between cells and bacteria is essential to the advancement of the new field of synthetic biology, where populations of genetically altered bacteria are "programmed" to do certain things. Such re-programmed bacterial gene circuits could see a wide variety of applications in medicine, environmental cleanup and biocomputing.

It is already known that a process known as "quorum sensing" underlies communication between bacteria. However, each type of bacteria seems to have its own quorum-sensing abilities, with tremendous variations, the researchers said.

"Quorum sensing is a cell-to-cell communication mechanism that enables bacteria to sense and respond to changes in the density of the bacteria in a given environment," said Anand Pai, graduate student in bioengineering at Duke's Pratt School of Engineering. "It regulates a wide variety of biological functions such as bioluminescence, virulence, nutrient foraging and cellular suicide."

The researchers found that the total volume of bacteria in relation to the volume of their environment is a key to quorum sensing, no matter what kind of microbe is involved.

"If there are only a few cells in an area, nothing will happen," Pai said. "If there are a lot of cells, the secreted chemicals are high in concentration, causing the cells to perform a specific action. We wanted to find out how these cells know when they have reached a quorum."

Pai and scientist Lingchong You, assistant professor of biomedical engineering and a member of Duke's Institute for Genome Sciences & Policy and Center for Systems Biology, have discovered what they believe is a common root among the different forms of quorum sensing. In an article in the July 2009 issue of the journal Molecular Systems Biology, they term this process "sensing potential."

"Sensing potential is essentially the linking of an action to the number of cells and the size of their environment," You said. "For example, a small number of cells would act differently than the same number of cells in a much larger space. No matter what type of cell or their own quorum sensing abilities, the relationship between the size of a cell and the size of its environment is the common thread we see in all quorum sensing systems.

"This analysis provides novel insights into the fundamental design of quorum sensing systems," You said. "Also, the overall framework we defined can serve as a foundation for studying the dynamics and the evolution of quorum sensing, as well as for engineering synthetic gene circuits based on cell-to-cell communications."

Synthetic gene circuits are carefully designed combinations of genes that can be "loaded" into bacteria or other cells to direct their actions in much the same way that a basic computer program directs a computer. Such re-programmed bacteria would exist as a synthetic ecosystem.

"Each population will synthesize a subset of enzymes that are required for the population as a whole to produce desired proteins or chemicals in a coordinated way," You said. "We may even be able to re-engineer bacteria to deliver different types of drugs or selectively kill cancer "

For example, You has already gained insights into the relationship between predators and prey by creating a synthetic circuit involving two genetically altered lines of bacteria. The findings from that work helped define the effects of relative changes in populations.

Source: Duke University (news : web)

Explore further: Researchers successfully clone adult human stem cells

add to favorites email to friend print save as pdf

Related Stories

Evolution of virulence regulation in Staphylococcus aureus

Oct 09, 2008

Scientists have gained insight into the complex mechanisms that control bacterial pathogenesis and, as a result, have developed new theories about how independent mechanisms may have become intertwined during evolution. The ...

The bacteria can cheat on their mates

Nov 15, 2007

Pursuing our own short term interests by cheating on the rest of the population is not the preserve of the human race. It seems bacteria can operate in just the same way.

Counting heads or measuring space?

Apr 02, 2007

Bacteria can “talk” to each other: by using signal substances they inform their neighbours as to whether or not it is worth switching certain genes on or off. This communication between bacterial cells is essential for ...

Recommended for you

Researchers successfully clone adult human stem cells

5 hours ago

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

8 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

For resetting circadian rhythms, neural cooperation is key

Apr 17, 2014

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...