Magnetic brain stimulation improves skill learning

Jul 07, 2009

The use of magnetic pulses to stimulate the dorsal premotor cortex (PMd) region of the brain results in an improved ability to learn a skilled motor task. Researchers writing in the open access journal BMC Neuroscience show that skilled movements can be stored as memories in the PMd and that magnetic stimulation of this area can facilitate this learning process.

Lara Boyd and Meghan Linsdell, from the University of British Columbia, studied the effect of transcranial magnetic stimulation of the PMd on the ability of 30 volunteers to track a target on a computer screen using a joystick. During the task, the target would move randomly, then enter a programmed pattern and finally return to moving randomly. The participants were not aware of the repeated section, believing that movements were random throughout.

The volunteers received four days of training, during which they were either given excitatory stimulation, inhibitory stimulation or sham stimulation immediately before practicing the motor task. The volunteers were not aware which group they were in. On the fifth day, they were tested to see how well they had learned the task. By comparing the improvements between the random and repeated sections of the task, the researchers were able to separate the general improvement due to practice from the learned motor memory of the repeated section.

Those participants who had received the excitatory stimulation were significantly better than the other groups at tracking the target during the repeated section of the test. They showed no significant difference in improvement during the random sections. The researchers conclude, "Our data support the hypothesis that the PMd is important for continuous motor learning, specifically via off-line consolidation of learned motor behaviors".

More information: Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills, Lara A Boyd and Meghan A Linsdell, BMC Neuroscience (in press), www.biomedcentral.com/bmcneurosci/

Source: BioMed Central (news : web)

Explore further: New ALS associated gene identified using innovative strategy

add to favorites email to friend print save as pdf

Related Stories

Brain stimulation improves dexterity

Oct 27, 2008

Applying electrical stimulation to the scalp and the underlying motor regions of the brain could make you more skilled at delicate tasks. Research published today in the open access journal BMC Neuroscience shows that a non- ...

Daytime sleep improves memory consolidation

Jan 07, 2008

A ninety minute daytime nap helps speed up the process of long term memory consolidation, a recent study conducted by Prof. Avi Karni and Dr. Maria Korman of the Center for Brain and Behavior Research at the University of ...

A walk in the park a day keeps mental fatigue away

Dec 18, 2008

If you spend the majority of your time among stores, restaurants and skyscrapers, it may be time to trade in your stilettos for some hiking boots. A new study in Psychological Science, a journal of the Association for Ps ...

Recommended for you

New ALS associated gene identified using innovative strategy

7 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

7 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

7 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

11 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

11 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments : 0