Fermi Telescope reveals a population of radio-quiet gamma-ray pulsars

Jul 02, 2009
This all-sky map shows the positions of 16 new pulsars (yellow) and eight millisecond pulsars (magenta) studied using Fermi's LAT. Credit: NASA/DOE/Fermi LAT Collaboration

(PhysOrg.com) -- A new class of pulsars detected by NASA's Fermi Gamma-ray Space Telescope is solving the mystery of previously unidentified gamma-ray sources and helping scientists understand the mechanisms behind pulsar emissions.

A study to be published by an international team of scientists in the July 2 edition of Science Express describes 16 pulsars discovered by Fermi based on their pulsed emissions of high-energy . A pulsar is a rapidly spinning neutron star, the dense core left behind after a . Most of the 1,800 known pulsars were found through their periodic radio emissions.

"These are the first pulsars ever detected by gamma rays alone, and already we've found 16," said coauthor Robert Johnson, professor of physics at the University of California, Santa Cruz. "The existence of a large population of radio-quiet pulsars was suspected prior to this, but until Fermi was launched, only one radio-quiet pulsar was known, and it was first detected in x-rays."

Johnson and other physicists at UCSC's Santa Cruz Institute for Particle Physics (SCIPP) identified the gamma-ray pulsars using computational techniques they developed to comb through data from Fermi's Large Area Telescope (LAT). Marcus Ziegler, a postdoctoral researcher at SCIPP and corresponding author of the paper, said detection of gamma-ray pulsations from a typical source requires weeks or months of data from the LAT.

"From the faintest pulsar we studied, the LAT sees only two gamma-ray photons a day," Ziegler said.

Of the 16 gamma-ray pulsars found by Fermi, 13 are associated with unidentified gamma-ray sources detected previously by the EGRET instrument on the Compton Gamma-ray Observatory. EGRET detected nearly 300 gamma-ray point sources, but was unable to detect pulsations from those sources, most of which have remained unidentified, said Pablo Saz Parkinson, also a SCIPP postdoctoral researcher and corresponding author of the paper.

"It's been a longstanding question what could be powering those unidentified sources, and the new Fermi results tell us that a lot of them are pulsars," Saz Parkinson said. "These findings are also giving us important clues about the mechanism of pulsar emissions."

A pulsar emits narrow beams of radio waves from the magnetic poles of the neutron star, and the beams sweep around like a lighthouse beacon because the magnetic poles are not aligned with the star's spin axis. If the radio beam misses the Earth, the pulsar cannot be detected by radio telescopes. Fermi's ability to detect so many radio-quiet gamma-ray pulsars indicates that the gamma-rays are emitted in a beam that is wider and more fan-like than the radio beam.

"This favors models in which the gamma rays are emitted from the outer magnetosphere of the pulsar, as opposed to the polar cap much closer to the surface of the star," Saz Parkinson said.

The very intense magnetic and electric fields of a pulsar accelerate charged particles to nearly the speed of light, and these particles are ultimately responsible for the gamma-ray emissions.

Because the rotation of the star powers the emissions, isolated pulsars slow down as they age and lose energy. But a binary companion star can feed material to a and spin it up to a rotation rate of 100 to 1,000 times a second. These are called millisecond pulsars, and Fermi scientists detected gamma-ray pulsations from eight millisecond pulsars that were previously discovered at radio wavelengths. Those results are reported in a second study also published in the July 2 edition of Science Express.

"Fermi has truly unprecedented power for discovering and studying gamma-ray pulsars," said Paul Ray of the Naval Research Laboratory in Washington. "Since the demise of the Compton Gamma Ray Observatory a decade ago, we've wondered about the nature of unidentified gamma-ray sources it detected in our galaxy. These studies from Fermi lift the veil on many of them."

Source: University of California - Santa Cruz (news : web)

Explore further: 'Perfect storm' quenching star formation around a supermassive black hole

add to favorites email to friend print save as pdf

Related Stories

Fermi telescope unveils a dozen new pulsars

Jan 06, 2009

(PhysOrg.com) -- NASA's Fermi Gamma-ray Space Telescope has discovered 12 new gamma-ray-only pulsars and has detected gamma-ray pulses from 18 others. The finds are transforming our understanding of how these ...

Pulsar Racing Through Space Reveals Comet-Like Trail

Dec 16, 2005

A team led by Dr. Patrizia Caraveo of the Italian National Institute for Astrophysics (INAF) in Milan discovered this cometary trail with data from NASA's Chandra X-ray Observatory Archive. The discovery follows ...

New technique improves estimates of pulsar ages

Jun 09, 2009

Astronomers at the University of California, Santa Cruz, have developed a new technique to determine the ages of millisecond pulsars, the fastest-spinning stars in the universe.

GLAST: The Challenge of Too Much New Data

May 22, 2007

The astrophysics community enthusiastically awaits the upcoming launch of the Gamma-ray Large Area Space Telescope (GLAST), the latest and most powerful gamma-ray telescope. But interpreting the huge amount of new data that ...

Recommended for you

The hot blue stars of Messier 47

16 hours ago

Messier 47 is located approximately 1600 light-years from Earth, in the constellation of Puppis (the poop deck of the mythological ship Argo). It was first noticed some time before 1654 by Italian astronomer ...

Why is space black?

Dec 16, 2014

Imagine you're in space. Just the floating part, not the peeing into a vacuum hose or eating that funky "ice cream" from foil bags part. If you looked at the Sun, it would be bright and your retinas would ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (3) Jul 03, 2009
THE ORIGIN AND ACCELERATION OF PROTONS FROM PULSARS??

Those working with NASA's Fermi Gamma-ray Space Telescope have addressed one part of a cosmic puzzle:

"The very intense magnetic and electric fields of a pulsar accelerate charged particles to nearly the speed of light, and these particles are ultimately responsible for the gamma-ray emissions."

The rest of the story: Repulsive interactions between neutrons cause neutron-emission from pulsars. Then neutrons quickly decay to protons and electrons.

See Journal of Fusion Energy 21 (2002) 193-198
http://arxiv.org/.../0501441

With kind regards
Oliver K. Manuel
yyz
5 / 5 (1) Jul 11, 2009
Other science news sites reported that Fermi received on average of 2 gamma-ray photons a day from these pulsars, making the statistical verification of these pulsars extraordinary!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.