Researchers uncover process involved in DNA repair

Jun 29, 2009 By Quinn Phillips
Chris Le

(PhysOrg.com) -- Every day people are exposed to chemical and physical agents that damage DNA. If it isn't repaired properly, this damage can lead to mutations that in some circumstances can lead to the development of cancer or death of the exposed cell. But in most cases, the damaged DNA is repaired and all is well.

There is a lot of work being done on DNA damage and repair, and University of Alberta researchers are the first to discover the process that is involved in recognizing and repairing damage in DNA.

"There are so many different kinds of damage that can be caused by given substances, so the damage will have a different ," said Chris Le, one of the researchers from the Faculty of Medicine & Dentistry. "Yet the molecules in the cells that are DNA repair-enzymes can find them and then they can differentiate them from normal, healthy DNA."

Le and his team, including Michael Weinfeld and Hailin Wang, used a new technology to monitor the early steps in the repair of the damage. They found that the proteins that initially recognize the damage amplify the distortion of the DNA around the damaged site by bending the DNA and separating the strands of the double helix. This makes it easier for the next protein to recognize and cut out the damaged portion of the DNA. The cells then patch up the empty space using the healthy half of the DNA as a model to repair the cell to its original state.

"It is a very exciting discovery because it contributes to the fundamental understanding of the mechanisms of DNA repair," said Le. "This is a big area of research; we're not alone. There are many people doing the research and, of course, everyone wants to contribute to this understanding of how DNA is repaired."

This is the first step in a long road, but it could mean big things. Much work went into this study, which was published in the June edition of the Proceedings of the National Academy of Sciences, before they could even look at the DNA repair mechanisms. The U of A team developed an advanced bio-analytical technique that enables dynamic monitoring of bio-molecular interactions.

"It could be commercialized and could be used by other people in research," said Le.

Provided by University of Alberta (news : web)

Explore further: Genetic code of the deadly tsetse fly unraveled

add to favorites email to friend print save as pdf

Related Stories

Real-time observation of the DNA-repair mechanism

May 22, 2008

For the first time, researchers at Delft University of Technology have witnessed the spontaneous repair of damage to DNA molecules in real time. They observed this at the level of a single DNA molecule. Insight into this ...

DNA damage to stem cells is central to ageing

Jun 08, 2007

DNA damage is a major mechanism behind the loss of adult stem cells over time, according to a Nature paper by Oxford University researchers and international colleagues.

Recommended for you

Genetic code of the deadly tsetse fly unraveled

8 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Engineered E. coli produces high levels of D-ribose

9 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...