Little-known marine decomposers attract the attention of genome sequencers

Jun 29, 2009
Labyrinthulomycetes from Peconic Bay are shown growing on pollen grains. Credit: Enixy Collado Mercado, Stony Brook University

The Department of Energy's Joint Genome Institute (JGI) announced today that they will sequence the genomes of four species of labyrinthulomycetes. These little-known marine species were selected for sequencing as the result of a proposal submitted to the competitive JGI Community Sequencing Program by a team of microbiologists led by Dr. Jackie Collier, assistant professor at the School of Marine and Atmospheric Sciences (SoMAS) at Stony Brook University.

"Labyrinthulomycetes are a huge group of organisms that behave ecologically like fungi," said Dr. Collier. "But we know so little about them and there is more diversity among this group than among all the animals you can think of."

Labyrinthulomycetes are single-celled marine decomposers that eat non-living plant, algal, and animal matter. They are ubiquitous and abundant—particularly on dead vegetation and in salt marshes and mangrove swamps. Although most labyrinthulomycetes species are not pathogens, the organisms responsible for eelgrass wasting disease and QPX disease in hard clams are part of this group.

In some regions, labyrinthulomycetes may be as important as bacteria in degrading organic matter. In coastal systems, the abundance of bacteria is tied to levels of organic matter from marine sources, while the abundance of labyrinthulomycetes is more closely tied to levels of particulate from land sources. This suggests that labyrinthulomycetes may play an important role in the marine carbon cycle by breaking down material that is difficult to degrade. Because labyrinthulomycetes—unlike bacteria—make long chain (PUFAs), they are also thought to improve the nutritional value of poor quality organic detritus.

"The genome sequences will provide a quantum leap in our understanding of the physiological capacity of these organisms," said Dr. Collier. "The genes can tell us which enzymes a species is capable of producing, which in turn tells us what kinds of material they can potentially degrade and what role they play in a marine ecosystem's food web."

In addition, genomic information might suggest ways to exploit labyrinthulomycetes in novel biotechnological applications. Labyrinthulomycetes produce a wide array of enzymes and some species can degrade crude oil. Also, some labyrinthulomycetes are currently cultured for nutritional supplements. If PUFAs derived from labyrinthulomycetes were to replace fish oils and meal used in aquaculture and animal farming, it would likely reduce the number of fish caught for use as animal feed and have a positive impact on the health of the world's oceans.

Source: Stony Brook University (news : web)

Explore further: Bitter food but good medicine from cucumber genetics

add to favorites email to friend print save as pdf

Related Stories

Study Links Photosynthesis Genes to Marine Virus Fitness

Feb 04, 2009

(PhysOrg.com) -- A recent Northeastern University study has shown, for the first time, the effect of individual genes on the fitness of a marine species at the ecosystem level. Using his innovative computer simulation model, ...

Marine bacteria's mealtime dash is a swimming success

Mar 10, 2008

Goldfish in an aquarium are able to dash after food flakes at mealtime, reaching them before they sink or are eaten by other fish. Researchers at MIT recently proved that marine bacteria, the smallest creatures ...

What makes life go at the tropics?

May 27, 2008

What causes tropical life to thrive: temperature, or sunlight? The answer is not necessarily “both.” According to a study published online this week in PNAS Early Edition, the explosion of species at the tropics has mu ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

3 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Bitter food but good medicine from cucumber genetics

23 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

Nov 27, 2014

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

Cataloguing 10 million human gut microbial genes

Nov 25, 2014

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.