High carbon dioxide levels cause abnormally large fish ear bones

Jun 25, 2009
These are fertilized eggs of white seabass, each containing an embryo with an attached yolk sac and oil globule (droplet). Credit: Hubbs SeaWorld Research Institute

Rising carbon dioxide levels in the ocean have been shown to adversely affect shell-forming creatures and corals, and now a new study by researchers at Scripps Institution of Oceanography at UC San Diego has shown for the first time that CO2 can impact a fundamental bodily structure in fish.

A brief paper published in the June 26 issue of the journal Science describes experiments in which fish that were exposed to high levels of carbon dioxide experienced abnormally large growth in their otoliths, or ear bones. Otoliths serve a vital function in fish by helping them sense orientation and acceleration.

The researchers had hypothesized that otoliths in young white seabass growing in waters with elevated carbon dioxide would grow more slowly than a comparable group growing in seawater with normal levels. They were surprised to discover the reverse, finding "significantly larger" otoliths in fish developing in high-CO2 water.

The fish in high-CO2 water were not larger in overall size, only the otoliths grew demonstrably bigger.

This is a side view of an otolith imaged with a scanning electron microscope. The top is smooth (oriented downward) and the bottom is pitted. The holes are approximately 1-2 microns in diameter. Credit: Scripps Institution of Oceanography, UC San Diego

"At this point one doesn't know what the effects are in terms of anything damaging to the behavior or the survival of the fish with larger otoliths," said David Checkley, a Scripps Oceanography professor and lead author of the new study. "The assumption is that anything that departs significantly from normality is an abnormality and abnormalities at least have the potential for having deleterious effects."

With carbon dioxide levels rising due to human activities, particularly fossil fuel burning, resulting in both increased ocean CO2 and , the researchers intend to broaden their studies to examine specific areas, such as determining whether the otolith growth abnormality exists in fish other than white seabass; locating the physical mechanism that causes the enhanced otolith growth; and assessing whether the larger otoliths have a functional effect on the survival and the behavior of the fish.

"Number three is the big one," said Checkley. "If fish can do just fine or better with larger otoliths then there's no great concern. But fish have evolved to have their bodies the way they are. The assumption is that if you tweak them in a certain way it's going to change the dynamics of how the otolith helps the fish stay upright, navigate and survive."

In addition to serving in orientation and acceleration, otoliths help reveal physical characteristics of fish. Because otoliths grow in onion-like layers, scientists use otoliths to determine the age of , counting the increments similar to tree-ring dating.

Source: University of California - San Diego (news : web)

Explore further: Adjusting wind power production during migration season saves bats

add to favorites email to friend print save as pdf

Related Stories

A difficult youth is a good thing for a fish

Jan 29, 2008

A tough early life turns out to be a good thing for a fish, according to scientists at the University of California, Santa Barbara. They discovered that fish larvae that survive a long, rough, offshore journey ...

How to Grow a Bigger Brain

Mar 06, 2006

Hatchery-reared steelhead trout show increased growth of some parts of the brain when small stones are scattered on the bottom of their tank, according to a new study by researchers at UC Davis. The brains ...

Fish growth changes enhanced by climate change

Apr 27, 2007

Changes in growth rates in some coastal and long-lived deep-ocean fish species in the south west Pacific are consistent with shifts in wind systems and water temperatures, according to new Australian research published in ...

Recommended for you

Tropical fish a threat to Mediterranean Sea ecosystems

14 hours ago

The tropical rabbitfish which have devastated algal forests in the eastern Mediterranean Sea pose a major threat to the entire Mediterranean basin if their distribution continues to expand as the climate ...

Moroccan city outlaws olive trees

15 hours ago

A Moroccan city has banned olive trees because of pollen-linked allergies and set an end-of-the-year deadline for residents to remove them, media reports said Thursday.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jyro
1 / 5 (2) Jun 26, 2009
Would this article call evolution abnormal?