Antidepressant directly stimulates brain growth factor receptors

Jun 25, 2009

The widely used antidepressant and pain medication amitriptyline--but not other closely related drugs -- can impersonate the brain's own growth factors, researchers at Emory University School of Medicine have shown.

The results are published online and will appear in the June 26 issue of the journal Chemistry & Biology.

Amitriptyline, a tricyclic antidepressant first introduced in the 1960s, and other tricyclics are thought to exert their effects by increasing the levels of the messenger chemicals serotonin and norepinephrine in the brain.

But the delay required for antidepressants to work has led scientists to the idea that a secondary effect, pushing neurons to survive and grow, must occur indirectly.

The finding that amitriptyline can directly stimulate molecules that help neurons grow and resist toxins suggests a separate mechanism by which some antidepressant and pain relief compounds may function.

Keqiang Ye, PhD, associate professor of pathology and laboratory medicine at Emory University School of Medicine, and his colleagues were looking for chemicals that could imitate a protein in the known as NGF (nerve growth factor).

NGF has been used experimentally to treat Alzheimer's disease and the degeneration of nerves in the extremities caused by diabetes. However, NGF cannot cross the blood-brain barrier and has puzzled investigators with its side effects, such as increased sensitivity to pain.

Working in Ye's laboratory, postdoctoral fellow Sung-Wuk Jang sorted through a library of chemicals to find those that could stimulate one of NGF's "receiver dish" molecules on nerve cells, called TrkA. The way NGF works is to pull together two TrkA molecules on the cell surface.

"We were surprised to find that amitriptyline has these same properties," Ye says. "This is an antidepressant that has been used for decades."

Doctors also prescribe amitriptyline for chronic pain such as migraine headaches or the nerve damage caused by diabetes, he notes.

In laboratory tests, amitriptyline could protect neurons from oxygen and glucose deprivation or the toxin kainic acid. Only amitriptyline, and not other antidepressants, could duplicate NGF's ability to stimulate neurons to send out "neurites," small projections thought to be the beginnings of connections to other neurons.

Amitriptyline directly binds TrkA and a related molecule called TrkB, the authors found. Amitriptyline could also bring together a mismatched pair of TrkA and TrkB - a phenomenon not seen before, Ye says.

Also surprising was the finding that other tricyclic antidepressants, even those with a similar molecular structure such as imipramine, could not match amitriptyline's ability to stimulate cells through TrkA.

In a model of antidepressant function called a "forced swim test," amitriptyline's effects do not depend on TrkA, because it still works on mice with modified TrkA genes, the authors found.

Recent studies have indicated that the presence of TrkB is necessary for to function in mouse models. The relationship between amitriptyline's ability to directly stimulate TrkA and TrkB and its antidepressant and pain-relief properties needs to be explored further, Ye says.

More information: S-W Jang, X. Liu, C-B Chan, D. Weinshenker, R.A. Hall, G. Xiao and K. Ye. Amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterdodimerization and has potent neurotrophic activity. Chemistry and Biology, 16, x-y (2009).

Source: Emory University (news : web)

Explore further: Following a protein's travel inside cells is key to improving patient monitoring, drug development

add to favorites email to friend print save as pdf

Related Stories

Antidepressants need new nerve cells to be effective

Aug 28, 2008

Researchers at UT Southwestern Medical Center have discovered in mice that the brain must create new nerve cells for either exercise or antidepressants to reduce depression-like behavior. In addition, the researchers found ...

Scientists find a key culprit in stroke brain cell damage

Mar 27, 2008

Researchers have identified a key player in the killing of brain cells after a stroke or a seizure. The protein asparagine endopeptidase (AEP) unleashes enzymes that break down brain cells' DNA, scientists at Emory University ...

Recommended for you

New method to analyse how cancer cells die

6 hours ago

(Phys.org) —A team from The University of Manchester – part of the Manchester Cancer Research Centre - have found a new method to more efficiently manufacture a chemical used to monitor cancer cells.

The anti-inflammatory factory

Apr 22, 2014

Russian scientists, in collaboration with their colleagues from Pittsburgh University, have discovered how lipid mediators are produced. The relevant paper was published in Nature Chemistry. Lipid mediators are molecules that p ...

User comments : 0

More news stories

New method to analyse how cancer cells die

(Phys.org) —A team from The University of Manchester – part of the Manchester Cancer Research Centre - have found a new method to more efficiently manufacture a chemical used to monitor cancer cells.

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...