Antidepressant directly stimulates brain growth factor receptors

Jun 25, 2009

The widely used antidepressant and pain medication amitriptyline--but not other closely related drugs -- can impersonate the brain's own growth factors, researchers at Emory University School of Medicine have shown.

The results are published online and will appear in the June 26 issue of the journal Chemistry & Biology.

Amitriptyline, a tricyclic antidepressant first introduced in the 1960s, and other tricyclics are thought to exert their effects by increasing the levels of the messenger chemicals serotonin and norepinephrine in the brain.

But the delay required for antidepressants to work has led scientists to the idea that a secondary effect, pushing neurons to survive and grow, must occur indirectly.

The finding that amitriptyline can directly stimulate molecules that help neurons grow and resist toxins suggests a separate mechanism by which some antidepressant and pain relief compounds may function.

Keqiang Ye, PhD, associate professor of pathology and laboratory medicine at Emory University School of Medicine, and his colleagues were looking for chemicals that could imitate a protein in the known as NGF (nerve growth factor).

NGF has been used experimentally to treat Alzheimer's disease and the degeneration of nerves in the extremities caused by diabetes. However, NGF cannot cross the blood-brain barrier and has puzzled investigators with its side effects, such as increased sensitivity to pain.

Working in Ye's laboratory, postdoctoral fellow Sung-Wuk Jang sorted through a library of chemicals to find those that could stimulate one of NGF's "receiver dish" molecules on nerve cells, called TrkA. The way NGF works is to pull together two TrkA molecules on the cell surface.

"We were surprised to find that amitriptyline has these same properties," Ye says. "This is an antidepressant that has been used for decades."

Doctors also prescribe amitriptyline for chronic pain such as migraine headaches or the nerve damage caused by diabetes, he notes.

In laboratory tests, amitriptyline could protect neurons from oxygen and glucose deprivation or the toxin kainic acid. Only amitriptyline, and not other antidepressants, could duplicate NGF's ability to stimulate neurons to send out "neurites," small projections thought to be the beginnings of connections to other neurons.

Amitriptyline directly binds TrkA and a related molecule called TrkB, the authors found. Amitriptyline could also bring together a mismatched pair of TrkA and TrkB - a phenomenon not seen before, Ye says.

Also surprising was the finding that other tricyclic antidepressants, even those with a similar molecular structure such as imipramine, could not match amitriptyline's ability to stimulate cells through TrkA.

In a model of antidepressant function called a "forced swim test," amitriptyline's effects do not depend on TrkA, because it still works on mice with modified TrkA genes, the authors found.

Recent studies have indicated that the presence of TrkB is necessary for to function in mouse models. The relationship between amitriptyline's ability to directly stimulate TrkA and TrkB and its antidepressant and pain-relief properties needs to be explored further, Ye says.

More information: S-W Jang, X. Liu, C-B Chan, D. Weinshenker, R.A. Hall, G. Xiao and K. Ye. Amitriptyline is a TrkA and TrkB receptor agonist that promotes TrkA/TrkB heterdodimerization and has potent neurotrophic activity. Chemistry and Biology, 16, x-y (2009).

Source: Emory University (news : web)

Explore further: Major step forward in understanding of viruses as scientists unlock exact structure of Hep A virus

add to favorites email to friend print save as pdf

Related Stories

Antidepressants need new nerve cells to be effective

Aug 28, 2008

Researchers at UT Southwestern Medical Center have discovered in mice that the brain must create new nerve cells for either exercise or antidepressants to reduce depression-like behavior. In addition, the researchers found ...

Scientists find a key culprit in stroke brain cell damage

Mar 27, 2008

Researchers have identified a key player in the killing of brain cells after a stroke or a seizure. The protein asparagine endopeptidase (AEP) unleashes enzymes that break down brain cells' DNA, scientists at Emory University ...

Recommended for you

World's fastest manufacture of battery electrodes

5 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

5 hours ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

6 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

User comments : 0