Larvae shun the light

Jun 22, 2009

Drosophila larvae avoid light during the foraging stage of their development. Research published in the open access journal BMC Neuroscience shows that both 5-HT (serotonergic) and corazonergic neurons have a role in regulating this behavior.

To identify which modulate the larvae's photobehavior, Verónica G. Rodriguez Moncalvo and Ana Regina Campos from McMaster University, Ontario, Canada analysed Drosophila which had been genetically engineered to achieve suppressed synaptic transmission in candidate neurons. Muted synaptic transmission can be achieved by targeted expression of tetanus toxin light chain (TNT), as when made in neurons TNT suppresses evoked and spontaneous neurotransmitter release. The authors looked first at larvae in which dopaminergic, serotonergic and corazonergic neurons had been silenced by using the DOPA decarboxylase (Ddc) promoter to drive TNT expression, and subsequently at larvae expressing constructs with more specific promoters, in which different subsets of Ddc neurons were muted. Larvae with and without the function of these neurons were put through their paces in light and dark conditions.

The results show that inactivation of Ddc neurons increases the aversion to light, both during the foraging phase, when larvae are characteristically photophobic, and the later stages of development, when larvae are usually photoneutral. Both 5-HT neurons and corazonergic neurons, but not dopaminergic neurons, contribute to light-controlled larval locomotion, and this is modulated at least partly by 5-HT neurons located in the brain hemispheres. However, this modulation does not appear to occur at the photoreceptor level and may be mediated by 5-HT1ADro receptors. These findings may provide clues to help identify the target neurons of the serotonin signalling, which the authors believe could be critical for light-controlled movement.

"These findings provide new insights into the function of 5-HT neurons in Drosophila larval behavior, as well as into the mechanisms underlying regulation of larval response to light," says Campos.

More information: Role of serotonergic neurons in the Drosophila larval response to light, Veronica G Rodriguez Moncalvo and Ana REGINA Campos, BMC Neuroscience (in press), www.biomedcentral.com/bmcneurosci/

Source: BioMed Central (news : web)

Explore further: AAN: phenytoin neuroprotective in optic neuritis

Related Stories

Flies' evasive move traced to sensory neurons

Nov 29, 2007

When fruit fly larvae are poked or prodded, they fold themselves up and corkscrew their bodies around, a behavior that appears to be the young insects’ equivalent of a “judo move,” say researchers reporting online on ...

Recommended for you

AAN: phenytoin neuroprotective in optic neuritis

9 hours ago

(HealthDay)—Phenytoin appears to be neuroprotective in acute optic neuritis (AON), according to a study scheduled to be presented at the annual meeting of the American Academy of Neurology, held from April ...

How a jab to the ribs jolts the brain into action

13 hours ago

A short jab in the ribs instantly arouses a drowsy colleague during a long and dreary work meeting. A new study by Yale neurobiologists describes just what happens in the brain immediately following that ...

How do we hear time within sound?

Apr 16, 2015

How does our auditory system represent time within a sound? A new study published in PLOS Computational Biology investigates how temporal acoustic patterns can be represented by neural activity within audito ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.