Nickel isotope may be methane producing microbe biomarker

Jun 22, 2009

Nickel, an important trace nutrient for the single cell organisms that produce methane, may be a useful isotopic marker to pinpoint the past origins of these methanogenic microbes, according to Penn State and University of Bristol, UK, researchers.

"Our data suggest significant potential in stable for identifying and quantifying methanogenesis on the early Earth," said Vyllinniskii Cameron, recent Penn State Ph.D. recipient in geosciences and astrobiology and currently a post-doctoral fellow at the University of Bristol. "Little is known about the actual timing of the evolution of methane producing organisms or their metabolism. Nickel stable isotope fractionation may well prove to be the fundamental unambiguous trace metal biomarker for these methanogens."

Fractionation of an element into its component stable isotopes occurs because each isotope is slightly different in mass. Biological organisms tend to favor one isotope over another and preferentially create stores of heavy or light isotopes that researchers can measure. The presence of a specific isotopic fraction can indicate that a biological process took place. Previous researchers have looked at transition metals other than nickel as potential biomarkers.

"There is a lot of interest in iron and copper isotopes and other metals that microbes use in trace amounts," said Christopher H. House, associate professor of geosciences and director of the Penn State Astrobiology Research Center, part of the NASA Astrobiology Institute. "However, iron goes through reduction processes with or without a biological component, so there is significant complexity when it is used as a biosignature."

In nature nickel does not seem to be as adversely affected by oxidation reduction changes so isotope fractionation might be more easily attributed to biological processes, such as during microbial assimilation or uptake of metals.

For this work the researchers did not look at ancient fossil cells, but grew modern day archaea in the laboratory, controlling their habitat and recording their rate of methane production. Archaea are single cell microorganisms similar to bacteria but with different evolutionary histories and biochemical pathways. The researchers report their results in today's (June 22) online edition of the Proceedings of the National Academy of Sciences.

Through a grant from the Worldwide Universities Network and a NASA research scholarship, Cameron performed the research, including setting up the protocols for the nickel isotopic system, at the University of Bristol with Derek Vance and Corey Archer, Bristol Isotope Group, department of Earth Sciences.

Cameron first investigated samples representative of the Earth's mantle and crust that were without any biological activity. These samples showed very little variation in nickel isotopic composition. She also analyzed samples from a group of meteorites, which exhibited even less variation. These studies showed that non-biological processes do not significantly fractionate nickel isotopes.

However, isotopic analyses of pure cultures of three archaea -- Methanosarcina barkeri, Methanosarcina acetivorans and Methanococcus jannaschii -- showed that all the archaea fractionated nickel so that the nickel component in the microbe was lighter relative to the starting isotopic value of the growth medium. To test whether non-methanogenic cells would also fractionate nickel, Cameron incubated an archaea that does not produce methane, Pyrobaculum calidifontis, under the same conditions. These cells did not fractionate nickel isotopes.

"While we only tested one non-methanogen and a more diverse suite of microorganisms should be investigated, at this time, it appears that nickel isotopic fractionation produced by microorganisms in general will not be as significant as the fractionation produced by methanogenic archaea," said Cameron.

"It may be possible in the future to test organic rich sedimentary layers from 2.7 billion years ago to see if nickel isotopic fractionation occurred," said House. "Because there are no known bacteria that are methanogenic and because archaea seem to fractionate nickel isotopes, perhaps such work can help pinpoint when these methane producing organisms came into being."

Source: Pennsylvania State University (news : web)

Explore further: Jeju Island is a live volcano, study reveals

add to favorites email to friend print save as pdf

Related Stories

Paired microbes eliminate methane using sulfur pathway

Jan 17, 2008

Anaerobic microbes in the Earth's oceans consume 90 percent of the methane produced by methane hydrates – methane trapped in ice – preventing large amounts of methane from reaching the atmosphere. Researchers now have ...

Did a nickel famine trigger the 'Great Oxidation Event'?

Apr 08, 2009

(PhysOrg.com) -- The Earth's original atmosphere held very little oxygen. This began to change around 2.4 billion years ago when oxygen levels increased dramatically during what scientists call the "Great ...

Sulfur signature changes thoughts on atmospheric oxygen

Aug 23, 2006

Ancient sediments that once resided on a lake bed and the ocean floor show sulfur isotope ratios unlike those found in other samples from the same time, calling into question accepted ideas about when the Earth’s atmosphere ...

Undersea microbes active but living on the slow side

Feb 21, 2006

Deeply buried ocean sediments may house populations of tiny organisms that have extremely low maintenance energy needs and population turnover rates of anywhere from 200 to 2,000 years, according to an international team ...

Origins of sulfur in rocks tells early oxygen story

Apr 16, 2009

(PhysOrg.com) -- Sedimentary rocks created more than 2.4 billion years ago sometimes have an unusual sulfur isotope composition thought to be caused by the action of ultra violet light on volcanically produced ...

Ecosystem In Suspended Animation

Mar 02, 2006

Deeply buried ocean sediments may house populations of tiny organisms that have extremely low maintenance energy needs and population turnover rates of anywhere from 200 to 2,000 years, according to an international team ...

Recommended for you

Jeju Island is a live volcano, study reveals

1 hour ago

In Jeju, a place emerging as a world-famous vacation spot with natural tourism resources, a recent study revealed a volcanic eruption occurred on the island. The Korea Institute of Geoscience and Mineral ...

Has Antarctic sea ice expansion been overestimated?

1 hour ago

New research suggests that Antarctic sea ice may not be expanding as fast as previously thought. A team of scientists say much of the increase measured for Southern Hemisphere sea ice could be due to a processing ...

Antarctic lakes theory dries up

4 hours ago

(Phys.org) —Antarctica is the driest continent on Earth, and always has been, with new research showing the previous "mega-lake theory" holds no water.

User comments : 0