A water snake that predicts which way fish will turn when it attacks

Jun 18, 2009
Illustration diagrams how the tentacled snake uses a body fake to trigger fishes' reflexive C-start response causing them to swim directly toward the snake's mouth.

Forget the old folk tales about snakes hypnotizing their prey. The tentacled snake from South East Asia has developed a more effective technique. The small water snake has found a way to startle its prey so that the fish turn toward the snake's head to flee instead of turning away. In addition, the fish's reaction is so predictable that the snake actually aims its strike at the position where the fish's head will be instead of tracking its actual movement.

"I haven't been able to find reports of any other predators that exhibit a similar ability to influence and predict the future behavior of their prey," says Kenneth Catania, associate professor of biological sciences at Vanderbilt University, who has used high-speed video to deconstruct the snake's unusual hunting technique.

When a fish detects the sound of a disturbance in one of its ears, a special neural circuit is triggered. This is called the C-start because it causes the fish to bend into a "C" shape in the direction opposite to the disturbance. It does this by causing the trunk muscles on the opposite side of the fish to contract and by inhibiting the muscles on side closest to the disturbance.

His observations are published this week in the online early edition of the Proceedings of the National Academy of Sciences.

Catania, who is the recipient of a MacArthur "genius” award, studies the brains and behavior of species with extreme specializations. He was attracted to the tentacled snake because it is the only snake that comes equipped with a pair of short tentacles on its nose and he was curious about their function.

"Before I begin a study on a new species, it is my practice to spend some time simply observing its basic behavior,” Catania explains. The snake forms an unusual "J” shape with its head at the bottom of the "J” when it is fishing. Then it remains completely motionless until a fish swims into the area near the hook of the "J.” That is when the snake strikes.

The snakes' motions take only a few hundredths of a second and are too fast for the human eye to follow. However, its prey reacts even faster, in a few thousandths of a second. In fact, fish are famous for the rapidity of their escape response and it has been extensively studied. These studies have found that many fish have a special circuit in their brains that initiates the escape, which biologists call the "C-start.” Fish ears sense the sound pressure on each side of their body. When the ear on one side detects a disturbance, it sends a message to the fishes' muscles causing its body to bend into a C-shape facing in the opposite direction so it can swim away from danger as quickly as possible

Catania is the first scientist to study this particular predator-prey interaction with the aid of a high-speed video camera. When he began examining the movements of the snake and its prey in slow motion, he saw something peculiar. When the fish that the snake targets turn to flee, most of them turn toward the snake's head and many literally swim into its jaws! In 120 trials with four different snakes, in fact, he discovered that an amazing 78 percent of the fish turned toward the snake's head instead of turning away.

Next, the biologist noticed that the first part of its body that the snake moves is not its head. Instead, it flexes a point midway down its body. Using a sensitive hydrophone that he put in the aquarium, he confirmed that this body fake produces sound waves intense enough to trigger the fish's C-start response. Because these sound waves come from the side opposite the snake's head, this reflex action drives the fish to turn and swim directly toward the snake's mouth.

"Once the C-start begins, the fish can't turn back,” Catania says. "The snake has found a way to use the fish's escape reflex to its advantage.”

As he studied the snake's actions even closer, he made an even more remarkable discovery. When it strikes, the snake doesn't aim for the fish's initial position and then adjust its direction as the fish moves — the way most predators do. Instead it heads directly for the location where it expects the fish's head to be.

"The best evidence for this is the cases when the snake misses,” says Catania. "Not all the targeted fish react with a C-start and the snake almost always misses those that don't react reflexively.”

Catania's next step will be to determine whether this predictive capability is hard-wired or learned. To do so, he hopes to obtain some baby snakes that have just hatched and videotape their first efforts to catch prey.

Click to view the high-speed video

Source: Vanderbilt University (news : web)

Explore further: Four new dragon millipedes found in China

add to favorites email to friend print save as pdf

Related Stories

Researchers reveal secrets of snake flight

May 12, 2005

It seems size does matters after all. But for flying snakes, smaller is better, according to University of Chicago researchers. In the May 15, 2005, issue of the Journal of Experimental Biology, scientists described the ...

Snakes Hear in Stereo

May 16, 2008

Physicists from the University Munich in Germany and the University of Topeka, Kansas have strong new evidence that snakes can hear through their jaws. Snakes don't have outer ears, leading to the myth that they can't hear ...

Battle over a garter snake in Wisconsin

Jul 29, 2006

Wisconsin lawmakers are threatening to remove a snake's protected status unless the state Department of Natural Resources eases regulations on developers.

Squirrels use snake scent

Dec 19, 2007

California ground squirrels and rock squirrels chew up rattlesnake skin and smear it on their fur to mask their scent from predators, according to a new study by researchers at UC Davis.

Recommended for you

Science casts light on sex in the orchard

1 hour ago

Persimmons are among the small club of plants with separate sexes—individual trees are either male or female. Now scientists at the University of California, Davis, and Kyoto University in Japan have discovered ...

Four new dragon millipedes found in China

3 hours ago

A team of speleobiologists from the South China Agriculture University and the Russian Academy of Sciences have described four new species of the dragon millipedes from southern China, two of which seem to ...

Scientist creates automatic birdsong recognition app

6 hours ago

Dr Dan Stowell, an EPSRC Research Fellow in QMUL's School of Electrical Engineering and Computer Science, has used a grant from Queen Mary Innovation to develop a prototype for an app that turns his research ...

New research reveals fish are smarter than we thought

6 hours ago

(Phys.org) —A new study from researchers in our Department of Psychology with colleagues at Queen Mary University of London has reported the first evidence that fish are able to process multiple objects ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

thales
not rated yet Jun 18, 2009
Clearly this is evidence for intelligent design! A "J" and a "C"? See, God put his initials right in there.


(I'm joking, of course. Obviously this is a great example of the evolutionary arms race.)
SmartK8
not rated yet Jun 19, 2009
Fascinating. So the fish are better off when not reacting at all. Moreover, the slower the fish is (or dumber) the better chance of its survival. I guess a presence of other predators or other strategies is inhibiting a chance of an evolution to sustain in a local minimum.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.