3D printing for new tissues and organs

Jun 18, 2009

A more effective way to build plastic scaffolds on which new tissues and even whole organs might be grown in the laboratory is being developed by an international collaboration between teams in Portugal and the UK.

Writing in a forthcoming issue of the International Journal of Computer Applications in Technology, researchers explain how a technique known as rapid prototyping, or three-dimensional printing, could enable that replicates the porous and hierarchical structures of natural tissues at an unprecedented level.

Scaffold structures for tissue engineering that allow researchers to grow , whether skin, muscle, or even kidney, in a three-dimensional could allow medical science to create natural artificial organs. Such scaffolds are increasingly important for the future direction of regenerative medicine. However, conventional techniques have several limitations. In particular, current scaffold construction lacks full control of the often microscopic pores and their architecture.

Tissue engineering usually involves cellular implantation. Cells might be derived from the patient or a donor. They are combined in the laboratory with a degradable scaffold that can then be implanted to replace damaged tissues. The presence of the structure scaffold also triggers the body to rebuild damaged tissue. Ceramics are usually used to help rebuild bone, while polymers might be used to rebuild soft body tissues.

Paulo Bártolo and Henrique Almeida of the Institute for Polymers and Composites, at Leiria Polytechnic Institute, and Tahar Laoui of the Department of Manufacturing and Systems at the University of Wolverhampton, are borrowing a technique from more conventional manufacturing to solve this problem.

In rapid prototyping, a computer controls a laser that cures a vat of resin layer by layer and building up a solid object. It allows designers and manufacturers to rapidly produce a prototype component created on a CAD machine from anywhere in the world. But, it is the precision with which a material can be constructed that could be crucial to developing rapid prototyping as a tissue engineering technique.

The researchers suggest that rapid prototyping overcomes many of the limitations of conventional scaffold techniques, such as stereolithography, which etches a block of material into shape. Rapid prototyping might one day allow , liver and muscle tissues to be constructed in the laboratory from a patient's own cells with close-to-natural detail ready for transplantation.

Source: Inderscience

Explore further: Coping with floods—of water and data

add to favorites email to friend print save as pdf

Related Stories

Scientists progress in successful tissue engineering

Mar 23, 2007

Tissue engineering is a relatively new field of basic and clinical science that is concerned, in part, with creating tissues that can augment or replace injured, defective, or diseased body parts.

Engineers create bone that blends into tendons

Aug 29, 2008

Engineers at Georgia Tech have used skin cells to create artificial bones that mimic the ability of natural bone to blend into other tissues such as tendons or ligaments. The artificial bones display a gradual ...

Inkjet printers can print human cells

Jan 19, 2005

Made-to-measure skin and bones, which could be used to treat burn victims or patients who have suffered severe disfigurements, may soon be a reality using inkjets which can print human cells. Scientists at The University of ...

Recommended for you

Coping with floods—of water and data

Dec 19, 2014

Halloween 2013 brought real terror to an Austin, Texas, neighborhood, when a flash flood killed four residents and damaged roughly 1,200 homes. Following torrential rains, Onion Creek swept over its banks and inundated the ...

Cloud computing helps make sense of cloud forests

Dec 17, 2014

The forests that surround Campos do Jordao are among the foggiest places on Earth. With a canopy shrouded in mist much of time, these are the renowned cloud forests of the Brazilian state of São Paulo. It is here that researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.