Scientists identify gene vital to early embryonic cells forming a normal heart and skull

Jun 16, 2009

New research from Cincinnati Children's Hospital Medical Center highlights the critical role a certain gene and its protein play during early embryonic development on formation of a normal heart and skull.

In a study posted online June 15 by the Proceedings of the National Academy of Sciences, a research team at Cincinnati Children's reports that too little of the gene/protein SHP2 interferes with the normal developmental activity of what are called neural crest . These cells, which occur very early in , migrate to specific regions of the embryo. While doing so, the cells are supposed to differentiate and give rise to certain nerve tissues, craniofacial bones or smooth muscle tissue of the heart.

"Our findings show that a deficiency of SHP2 in neural crest cells results in a failure of cell differentiation at diverse sites in the developing embryo," said Jeffrey Robbins, Ph.D., co-director of the Heart Institute at Cincinnati Children's and senior investigator of the study. "This leads to anatomical and functional deficits so severe that it precludes viability of the developing fetus."

SHP2 is a tyrosine phosphatase - an enzyme that helps trigger a cascade of biochemical reactions in cells as they specify to form certain tissues.

Although the study was conducted using mouse embryos, the findings are significant in efforts to understand congenital malformations of the heart and craniofacial region in people. Especially relevant, the researchers said, is the insight gained into early molecular events during embryonic development that might help explain such birth defects.

Dr. Robbins said the findings from this study can be used to develop specific drugs that could target the affected pathway, leading to treatment of heart and craniofacial malformations. About 4 percent of human infants are born with congenital malformations. Abnormal heart development is the most common human birth defect, affecting about 1 percent of newborns. The researcher team also wants to explore the exact alterations in cell migration, expansion and differentiation that contribute to birth defects of other organ systems.

Source: Cincinnati Children's Hospital Medical Center (news : web)

Explore further: Team finds key signaling pathway in cause of preeclampsia

add to favorites email to friend print save as pdf

Related Stories

Researchers uncover genetic basis for some birth defects

Nov 10, 2008

A multidisciplinary research team at Case Western Reserve University led by Gary Landreth, Ph.D., a professor in the School of Medicine's Department of Neurosciences, has uncovered a common genetic pathway for a number of ...

Getting to the heart of the heart

Nov 22, 2006

Helping to change scientists' thinking about how the heart is formed, investigators at Children's Hospital Boston have identified a type of stem cell that gives rise to at least two different cell types that make up the heart's ...

Recommended for you

Testing time for stem cells

1 hour ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

20 hours ago

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0