New study closes in on geologic history of Earth's deep interior

Jun 15, 2009
This schematic of Earth’s crust and mantle shows the results of a new study that found that extreme pressures would have concentrated iron’s heavier isotopes near the bottom of the mantle as it crystallized from an ocean of magma to its solid form 4.5 billion years ago. Credit: Louise Kellogg, modified by James Rustad & Qing-zhu Yin/UC Davis

By using a super-computer to virtually squeeze and heat iron-bearing minerals under conditions that would have existed when the Earth crystallized from an ocean of magma to its solid form 4.5 billion years ago, two UC Davis geochemists have produced the first picture of how different isotopes of iron were initially distributed in the solid Earth.

The discovery could usher in a wave of investigations into the evolution of Earth's mantle, a layer of material about 1,800 miles deep that extends from just beneath the planet's thin crust to its metallic core.

"Now that we have some idea of how these isotopes of iron were originally distributed on Earth," said study senior author James Rustad, a Chancellor's fellow and professor of geology, "we should be able to use the isotopes to trace the inner workings of Earth's engine."

A paper describing the study by Rustad and co-author Qing-zhu Yin, an associate professor of geology, was posted online by the journal Nature on Sunday, June 14, in advance of print publication in July.

Sandwiched between Earth's crust and core, the vast mantle accounts for about 85 percent of the planet's volume. On a human time scale, this immense portion of our orb appears to be solid. But over millions of years, heat from the molten core and the mantle's own radioactive decay cause it to slowly churn, like thick soup over a low flame. This circulation is the driving force behind the surface motion of , which builds mountains and causes earthquakes.

One source of information providing insight into the physics of this viscous mass are the four stable forms, or isotopes, of iron that can be found in rocks that have risen to Earth's surface at mid-ocean ridges where seafloor spreading is occurring, and at hotspots like Hawaii's volcanoes that poke up through the Earth's crust. Geologists suspect that some of this material originates at the boundary between the mantle and the core some 1,800 miles beneath the surface.

"Geologists use isotopes to track physico-chemical processes in nature the way biologists use DNA to track the evolution of life," Yin said.

Because the composition of iron isotopes in rocks will vary depending on the pressure and temperature conditions under which a rock was created, Yin said, in principle, geologists could use iron isotopes in rocks collected at hot spots around the world to track the mantle's geologic history. But in order to do so, they would first need to know how the isotopes were originally distributed in Earth's primordial ocean when it cooled down and hardened.

As a team, Yin and Rustad were the ideal partners to solve this riddle. Yin and his laboratory are leaders in the field of using advanced mass spectrometric analytical techniques to produce accurate measurements of the subtle variations in isotopic composition of minerals. Rustad is renowned for his expertise in using large computer clusters to run high-level quantum mechanical calculations to determine the properties of minerals.

The challenge the pair faced was to determine how the competing effects of extreme pressure and temperature deep in Earth's interior would have affected the minerals in the lower mantle, the zone that stretches from about 400 miles beneath the planet's crust to the core-mantle boundary. Temperatures up to 4,500 degrees Kelvin in the region reduce the isotopic differences between minerals to a miniscule level, while crushing pressures tend to alter the basic form of the iron atom itself, a phenomenon known as electronic spin transition.

Using Rustad's powerful 144-processor computer, the two calculated the iron isotope composition of two minerals under a range of temperatures, pressures and different electronic spin states that are now known to occur in the lower mantle. The two minerals, ferroperovskite and ferropericlase, contain virtually all of the iron that occurs in this deep portion of the Earth.

These calculations were so complex that each series Rustad and Yin ran through the computer required a month to complete.

In the end, the calculations showed that extreme pressures would have concentrated iron's heavier isotopes near the bottom of the crystallizing mantle.

It will be a eureka moment when these theoretical predictions are verified one day in geological samples that have been generated from the lower mantle, Yin said. But the logical next step for him and Rustad to take, he said, is to document the variation of iron isotopes in pure chemicals subjected to temperatures and pressures in the laboratory that are equivalent to those found at the core-mantle boundary. This can be achieved using lasers and a tool called a diamond anvil.

"Much more fun work lies ahead," he said. "And that's exciting."

Source: University of California - Davis

Explore further: Huge waves measured for first time in Arctic Ocean

add to favorites email to friend print save as pdf

Related Stories

Electronic heat trap grips deep Earth

Nov 12, 2008

(PhysOrg.com) -- The key to understanding Earth's evolution, including how our atmosphere gained oxygen and how volcanoes and earthquakes form, is to look deep, really deep, into the lower mantle—a region ...

Earth's getting 'soft' in the middle

Jan 24, 2008

Since we can’t sample the deepest regions of the Earth, scientists watch the velocity of seismic waves as they travel through the planet to determine the composition and density of that material. Now a new ...

Experiments challenge models about the deep Earth

Sep 20, 2007

In the first experiments able to mimic the crushing, searing conditions found in Earth’s lower mantle, and simultaneously probe tell-tale properties of iron, scientists have discovered that material there ...

The great recycler -- planet Earth

Jun 09, 2007

In the current edition of leading science journal Nature, an international team of researchers publishes proof that the Earth recycles portions of its own crust, driving it deep down into the mantle of the ...

Recommended for you

Huge waves measured for first time in Arctic Ocean

9 hours ago

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water which is predicted to extend across the whole Arctic Ocean before the middle ...

New research reveals Pele is powerful, even in the sky

14 hours ago

One might assume that a tropical storm moving through volcanic smog (vog) would sweep up the tainted air and march on, unchanged. However, a recent study from atmospheric scientists at the University of Hawai'i ...

Image: Wildfires continue near Yellowknife, Canada

15 hours ago

The wildfires that have been plaguing the Northern Territories in Canada and have sent smoke drifting down to the Great Lakes in the U.S. continue on. NASA's Aqua satellite collected this natural-color image ...

Excavated ship traced to Colonial-era Philadelphia

16 hours ago

Four years ago this month, archeologists monitoring the excavation of the former World Trade Center site uncovered a ghostly surprise: the bones of an ancient sailing ship. Tree-ring scientists at Columbia ...

User comments : 0