Popular Alzheimer's theory may be false trail

Jun 15, 2009

The idea that anti-inflammatory drugs might protect people struggling with dementia from Alzheimer's disease has received a blow with the online release of a study of human brain tissue in Acta Neuropathologica.

Researchers with the McKnight Institute of the University of Florida, in collaboration with scientists at the University of Frankfurt, Germany, discovered that inflammation of microglia — an abundant cell type that plays an important supporting role in the brain — does not appear to be associated with dementia in .

The finding supports recent clinical trial results that indicate anti-inflammatory drugs are not effective at fighting dementia in patients with Alzheimer's disease, which affects about 5.3 million Americans.

"For almost 20 years now, it's been claimed that brain inflammation contributes to the development of Alzheimer's disease dementia, and based on that claim, numerous clinical trials with anti-inflammatory drugs have been conducted. They have been unsuccessful," said Wolfgang Streit, Ph.D., a professor of neuroscience at the College of Medicine. "In the current paper we have shown that the brain's immune system, made up of microglia, is not activated in the brains of Alzheimer's patients, as would be the case if there were inflammation. Instead, microglia are degenerating. We claim that a loss of microglial contributes to the loss of neurons, and thus to the development of dementia."

Microglial cells are a subset of a very large population of brain cells known as glial cells. Neurons are the workhorse cells of the brain, enabling thought and movement, but glia are their faithful sidekicks, providing physical and nutritional support.

Glial cells, which outnumber neurons 10-to-1, are at the heart of a popular explanation for Alzheimer's disease that suggests protein fragments called beta amyloid — Abeta for short — clump together in the spaces between , causing and dementia. Inflammation theories suggest that microglia become "activated" and mount an immune response to these protein clumps, and instead of being helpful, a toxic release of chemicals occurs, worsening the disease effects.

However, Streit's high-resolution observations did not find evidence that Abeta activates, or inflames, human microglia cells. Nor did researchers find evidence that inflammation is to blame for brain cell death.

"This paper potentially represents a paradigm shift in the way we look at Alzheimer's disease," said Mark A. Smith, Ph.D., a professor of pathology at Case Western Reserve University and editor-in-chief of the Journal of Alzheimer's Disease. "The study goes against the very popular idea of neuro-inflammation; instead, the idea that microglia are senescent is consistent with a number of features of the disease.

"The research makes a very good case that these cells are subject to aging," said Smith, who did not participate in the study. "These cells were thought to be activated (against Alzheimer's), but this paper makes a strong case that they are not. The study has taken a novel approach that has led to a novel insight."

Using a commercially available antibody, Streit for the first time created a marker for microglial cells in human brain specimens that had been in chemical storage. The specimens were from 19 people with varying degrees of Alzheimer's, ranging from severe to none at all. Two of the samples were from Down syndrome patients, who are known to develop Alzheimer's pathology in middle age.

When researchers examined these cells alongside neurons under a high-resolution microscope, they found that — unless an infection had occurred elsewhere in the body — microglial cells from Alzheimer's patients were not distinctly larger or unusually shaped, which would have been the case had they been inflamed.

"What I expected to see is activated microglia right next to dying neurons," Streit said. "That is what I did not find. What I propose is glia are dying, and the neurons lose support. We now need to find out what caused glia to degenerate. Rather than trying to find ways to inhibit microglia with anti-inflammatory drugs, we need to find ways to keep them alive and strong. It's a whole new field."

The microglial cells had a tangled, fragmented appearance, similar to neurons in the throes of Alzheimer's disease or — old age.

"These cells are breaking into pieces," said Streit, who collaborated with Alzheimer's researcher Heiko Braak, M.D, of the Institute for Clinical Neuroanatomy in Frankfurt. "They are on their way out. For the first time, we are proving that microglial cells are subject to aging and may undergo degeneration, and that the loss of these cells precedes the loss of neurons. Research has been so focused on finding activated microglia, no one considered that these cells were degenerating and lost support."

Source: University of Florida (news : web)

Explore further: US scientists make embryonic stem cells from adult skin

add to favorites email to friend print save as pdf

Related Stories

Anti-inflammatory drug blocks brain plaques

Jun 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Scientists find new cause of Alzheimer's

Apr 19, 2006

Belgium researchers say they are the first to demonstrate the quantity of amyloid protein in brain cells is a major factor of Alzheimer's disease.

Alzheimer's disease as a case of brake failure?

Jun 24, 2008

[B]A loss of protein function in neurons may lead to dementia[/B] Rutgers researcher Karl Herrup and colleagues at Case Western Reserve University have discovered that a protein that suppresses cell division in brain cel ...

Recommended for you

Leeches help save woman's ear after pit bull mauling

Apr 18, 2014

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

Apr 17, 2014

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet Jun 15, 2009
My bet is that those microglia are deficient of something, some micronutricient that they need but had not obtained due to less than optimal nutrition these days.
googleplex
not rated yet Jun 16, 2009
The strongest correlation found to date has been Herpes Simplex A and individuals with APOE-4 genotypes. So I expect that the cause is viral or sub-viral i.e. prion or other self replicating molecule.
Note that currently there are no sterilization techniques in use which protect against sub viral pathogens such as CJD. I have seen an inventions called a plasma autoclave which do sterilize prions.
ironjustice
not rated yet Jun 16, 2009
They are actually seeing higher than normal
levels of metal in the brain of those with neurodisease and are actively targeting these metals with drugs such as clioquinal which are
'melting' the plaques.

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...