Baby Stars Finally Found in Jumbled Galactic Center

Jun 10, 2009
This infrared image from NASA's Spitzer Space Telescope shows three baby stars in the bustling center of our Milky Way galaxy. Image credit: NASA/JPL-Caltech

Astronomers have at last uncovered newborn stars at the frenzied center of our Milky Way galaxy. The discovery was made using the infrared vision of NASA's Spitzer Space Telescope.

The heart of our spiral galaxy is cluttered with stars, dust and gas, and at its very center, a supermassive black hole. Conditions there are harsh, with fierce stellar winds, powerful shock waves and other factors that make it difficult for stars to form. Astronomers have known that stars can form in this chaotic place, but they're baffled as to how this occurs. Confounding the problem is all the dust standing between us and the center of our galaxy. Until now, nobody had been able to definitively locate any baby stars.

"These stars are like needles in a haystack," said Solange Ramirez, the principal investigator of the research program at NASA's Exoplanet Science Institute at the California Institute of Technology, Pasadena. "There's no way to find them using optical light, because dust gets in the way. We needed Spitzer's infrared instruments to cut through the dust and narrow in on the objects."

The team plans to look for additional baby stars in the future, and ultimately to piece together what types of conditions allow stars to form in such an inhospitable environment as our galaxy's core.

"By studying individual stars in the galactic center, we can better understand how stars are formed in different interstellar environments," said Deokkeun An of the Infrared Processing and Analysis Center at Caltech, lead author of a paper submitted for publication in the Astrophysical Journal. "The Milky Way galaxy is just one of more than hundreds of billions of galaxies in the visible universe. However, our galaxy is so special because we can take a closer look at its individual stellar components." An started working on this program while a graduate student at Ohio State University, Columbus, under the leadership of Ohio State astronomer Kris Sellgren, the co-investigator on the project.

The core of the Milky Way is a mysterious place about 600 light-years across (light would take 600 years to travel from one end to the other). While this is just a fraction of the size of the entire Milky Way, which is about 100,000 light-years across, the core is stuffed with 10 percent of all the gas in the galaxy -- and loads and loads of stars.

Before now, there were only a few clues that stars can form in the galaxy's core. Astronomers had found clusters of massive adolescent stars, in addition to clouds of charged gas -- a sign that new stars are beginning to ignite and ionize surrounding gas. Past attempts had been unsuccessful in finding newborn stars, or as astronomers call them, young stellar objects.

Ramirez and colleagues began their search by scanning large Spitzer mosaics of our galactic center. They narrowed in on more than 100 candidates, but needed more detailed data to confirm the stars' identities. Young stellar objects, when viewed from far away, can look a lot like much older stars. Both types of stars are very dusty, and the dust lying between us and them obscures the view even further.

To sort through the confusion, the astronomers looked at their candidate stars with Spitzer's spectrograph - an instrument that breaks light apart to reveal its rainbow-like array of infrared colors. Molecules around stars leave imprints in their light, which the spectrograph can detect.

The results revealed three stars with clear signs of youth, for example, certain warm, dense gases. These youthful features are found in other places in the galaxy where stars are being formed.

"It is amazing to me that we have found these stars," said Ramirez. "The is a very interesting place. It has young stars, old stars, black holes, everything. We started mining a catalog of about 1 million sources and managed to find three young stars -- that will help reveal the secrets at the core of the Milky Way."

The young stellar objects are all less than about 1 million years old. They are embedded in cocoons of gas and dust, which will eventually flatten to disks that, according to theory, later lump together to form planets.

Source: NASA/JPL

Explore further: Professional and amateur astronomers join forces

add to favorites email to friend print save as pdf

Related Stories

Amazing Andromeda Galaxy

Oct 03, 2006

The many "personalities" of our great galactic neighbor, the Andromeda galaxy, are exposed in this new composite image from NASA's Galaxy Evolution Explorer and the Spitzer Space Telescope.

Smoking galaxy revealed

Mar 17, 2006

Where there's smoke, there's fire - even in outer space. A new infrared image from NASA's Spitzer Space Telescope shows a burning hot galaxy whose fiery stars appear to be blowing out giant billows of smoky ...

Milky Way's infrared portrait gives new view of galaxy

Jun 03, 2008

Humans have always had a ringside seat for viewing the Milky Way. Now, however, thanks to NASA's Spitzer Space Telescope, astronomers have obtained an entirely new perspective of our home galaxy: a complete ...

Chandra Peers at Cosmic Super Bubbles

Aug 31, 2007

Using the Chandra X-ray Observatory, astronomers explored a particular region of clouds and gas where stars are forming in one of the Milky Way's closest galactic neighbors.

Recommended for you

Professional and amateur astronomers join forces

21 hours ago

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

A star's early chemistry shapes life-friendly atmospheres

Apr 23, 2014

Born in a disc of gas and rubble, planets eventually come together as larger and larger pieces of dust and rock stick together. They may be hundreds of light-years away from us, but astronomers can nevertheless ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (4) Jun 12, 2009
GREAT REASONING

"However, our galaxy is so special because we can take a closer look at its individual stellar components."

Now apply that same reasoning to the star next door, the only one that is close enough for detailed measurements.

For example, the Sun discards 50,000 billion metric tons of Hydrogen in the solar wind each year.

Is the Hydrogen fuel for the H-fusion reactor furnace that powers the Sun?

Or is the Hydrogen smoke (a neutron-decay product) from the furnace that powers the Sun? See: http://arxiv.org/.../0411255

With kind regards,
Oliver K. Manuel
http://www.omatumr.com/


barakn
3.9 / 5 (7) Jun 12, 2009
Oliver Manuel's recent efforts to plaster Physorg.com and other public news sites with his theories and personal URLs are a bit puzzling, as scientists have a variety of publications available to communicate directly to each other in. My best guess is that he is desperately trying to prop up his legacy in light of his arrest in his university office on 7 charges of rape and sodomy based on allegations by 4 of his own children. The charges have been reduced to one count of felony attempted sodomy, not necessarily because of his innocence, but because of the statute of limitations. One can only guess how the recent charges and decades of family strife have affected his ability to reason rationally and to remain objective while defending his unpopular theories.

http://www.connec...id=10140
http://www.komu.c...816.page
http://blogs.colu...assault/
Ethelred
5 / 5 (1) Aug 08, 2009
Barakn:

What did you do that has Earls giving you a one for every post he can find? And I thought he was mad at me.

Not a PM so Earls in hopes that Earls sees this.

If you want I have just found more information regarding your links.

I wonder I Oliver will look at this. He doesn't seem to have noticed your post at all.

Ethelred

More news stories

Habitable exoplanets are bad news for humanity

Last week, scientists announced the discovery of Kepler-186f, a planet 492 light years away in the Cygnus constellation. Kepler-186f is special because it marks the first planet almost exactly the same size as Earth ...

Professional and amateur astronomers join forces

(Phys.org) —Long before the term "citizen science" was coined, the field of astronomy has benefited from countless men and women who study the sky in their spare time. These amateur astronomers devote hours ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.

Facebook woos journalists with 'FB Newswire'

Facebook launched Thursday FB Newswire, billed as an online trove of real-time information for journalists and newsrooms to mine while reporting on events or crafting stories.