Scientists uncover a novel mechanism controlling tumor growth in the brain

Jun 08, 2009

As survival rates among some patients with cancer continue to rise, so does the spread of these cancers to the brain - as much as 40 percent of all diagnosed brain cancers are considered metastatic, having spread from a primary cancer elsewhere in the body.

Now, scientists from The Scripps Research Institute have discovered a molecular mechanism that plays a pivotal role in controlling in the brain. The discovery could provide a basis for potentially effective therapies for the treatment of .

The study was published in an online Early Edition of the journal Proceedings of the National Academy of Sciences (PNAS) the week of June 8, 2009.

"Our study could have a broad impact because it explains at a molecular level how metastatic lesions thrive in the brain," said Scripps Research Associate Professor Brunhilde Felding-Habermann, who led the research. "This offers a potential target for inhibiting the growing problem of brain metastasis."

For that have invaded the brain, Felding-Habermann and her colleagues found that when activated, a tumor known as integrin αvβ3 increased the supply of a growth factor involved in the development of new ("angiogenesis") necessary for tumor expansion within the brain tissue. In contrast, the same receptor did not influence tumor growth at the primary cancer site, in this case, the breast.

"The fact that we uncovered a link between activated αvβ3 and angiogenesis is quite striking," said Senior Research Associate Mihaela Lorger, the first author of the study. "In addition, our study showed that that the ability of tumor cell αvβ3 to enhance angiogenesis depends very much on the microenvironment."

This receptor's varying effects on tumor cells depending on their location in the body reinforces a principle that the Felding-Habermann lab uncovered a few years ago.

"For tumor cells, it's not just the presence of the receptor on the cells, but the conformation or shape of the molecule that determines how well tumor cells can do within different tissues" Felding-Habermann said. "The shape of the molecule can increase or reduce the receptor's affinity for its natural ligands."

In the new study, which was conducted in mouse models, the scientists showed that activated αvβ3 on tumor cells leads to angiogenesis in the brain by elevating the expression of the VEGF, a protein that is critical to the formation of new blood vessels.

Tumor cells normally try to recruit more blood vessels when oxygen supply runs low. When oxygen and nutrients get scarce, many tumor cells die and tumor growth slows down until new vessels have formed. But in the brain, activated αvβ3 promotes rapid tumor growth by enabling tumor cells to attract new blood vessels continuously, even when oxygen is still abundant.

The scientists plan to follow up on their new findings by testing if activated αvβ3 on tumor cells also supports brain metastasis of other types of cancer, and by investigating if targeting the activated form of αvβ3 can inhibit metastatic brain disease.

Source: The Scripps Research Institute (news : web)

Explore further: AstraZeneca cancer drug, companion test approved

add to favorites email to friend print save as pdf

Related Stories

Cancer stem cells: know thine enemy

Dec 21, 2007

Stem cells -- popularly known as a source of biological rejuvenation -- may play harmful roles in the body, specifically in the growth and spread of cancer. Amongst the wildly dividing cells of a tumor, scientists have located ...

Recommended for you

Putting the brakes on cancer

Dec 19, 2014

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

Dec 19, 2014

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.