Muscle atrophy through thick but not thin

Jun 08, 2009

During desperate times, such as fasting, or muscle wasting that afflicts cancer or AIDS patients, the body cannibalizes itself, atrophying and breaking down skeletal muscle proteins to liberate amino acids. In a new study published online June 8 and in the June 15, 2009 print issue of the Journal of Cell Biology, Shenhav Cohen, Alfred Goldberg, and colleagues show that muscle atrophy is a more ordered process than was previously thought. These researchers find evidence that enzyme MuRF1 selectively degrades the thick filaments in muscle, while bypassing the thin filaments.

We depend on skeletal muscles because they can produce movement, but they serve another purpose too. "Skeletal is a protein reservoir that can be mobilized in times of need," says Goldberg. The structural core of a muscle cell is the myofibril, composed of myosin-containing thick filaments and actin-containing thin filaments. During atrophy, this structure is disassembled, but exactly how was not known. MuRF1, an atrophy-related gene, is a ubiquitin ligase that "ubiquitylates," or tags a protein, by attaching a ubiquitin molecule, marking it for degradation by the cell. It was unclear when and how ubiquitylation was involved in disassembling skeletal muscles. The researchers triggered atrophy in mice containing defective MuRF1 (lacking its RING-finger domain crucial for ubiquitylation). These mutant mice break down less muscle than wild-type mice, and less ubiquitylation takes place in the mutants.

Cohen and colleagues found that MuRF1 targets the thick filament, demolishing various components in a specific order. The researchers hypothesize that removal of certain thick filament components first permits subsequent MuRF1 access to the myosin heavy chain. However, MuRF1 doesn't exert the same power over the thin filament, which began to come apart even when MuRF1 was absent.

"Up to now, people thought the muscle just gets smaller" during atrophy, Goldberg says. Instead, these findings paint a picture of a well-regulated process of degradation and disassembly. This mechanism "allows the muscle to still be a muscle and function," Goldberg says. "Atrophy doesn't just destroy muscle cells, like apoptosis." The results indicate that MuRF1 doesn't have to wait for caspases or calpains to "pre-digest" the myofibril components. The work also bears on the practical question of whether can be halted or reversed with drugs. "It argues against MuRF1 inhibitors" for this purpose, Goldberg says, because the enzyme is responsible for degrading only some muscle components, whereas others fall victim to other ubiquitin ligases and autophagy. Inhibitors that work upstream to block signals that activate ubiquitin ligases and initiate autophagy are a better bet.

Source: Rockefeller University Press

Explore further: Researchers explore what happens when heart cells fail

add to favorites email to friend print save as pdf

Related Stories

Muscle weakness: New mutation identified

Jun 14, 2007

New research, published in The Journal of Physiology, has identified a novel mutation associated with muscle weakness and distal limb deformities. The study demonstrates that muscle weakness experienced by persons with a ...

Key finding in rare muscle disease

Jan 17, 2007

The finding is in the current issue of Annals of Neurology, a leading international neurology journal, in work led by Professor Nigel Laing and Dr Kristen Nowak of the Laboratory for Molecular Genetics at the Western Austra ...

Researchers discover 'modus operandi' of heart muscle protein

Apr 10, 2008

Researchers at the University of Pennsylvania School of Medicine have discovered that a protein called leiomodin (Lmod) promotes the assembly of an important heart muscle protein called actin. What’s more, Lmod directs ...

Heart saves muscle

May 25, 2009

A heart muscle protein can replace its missing skeletal muscle counterpart to give mice with myopathy a long and active life, show Nowak et al. The findings will be published online on Monday, May 25, 2009 ...

Recommended for you

Researchers explore what happens when heart cells fail

9 minutes ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

Stem cells from nerves form teeth

2 hours ago

Researchers at Karolinska Institutet in Sweden have discovered that stem cells inside the soft tissues of the tooth come from an unexpected source, namely nerves. These findings are now being published in the journal Nature and co ...

Human brain has coping mechanism for dehydration

15 hours ago

(HealthDay)—Although dehydration significantly reduces blood flow to the brain, researchers in England have found that the brain compensates by increasing the amount of oxygen it extracts from the blood. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
not rated yet Jun 08, 2009
This may also offer a potential treatment for severe Anorexia--- Providing psychological issues are resolved, too...