A lethal cancer knocked down by one-two drug punch

Jun 07, 2009

In the battle against cancer, allies can come from unexpected sources. Research at The Jackson Laboratory has yielded a new approach to treating leukemia, one that targets leukemia-proliferating cells with drugs that are already on the market.

Jackson Adjunct Professor Shaoguang Li, M.D., Ph.D., who now has a laboratory at the University of Massachusetts Medical School in Worcester, led a research team that identified a gene involved with the inflammatory response that could hold the key to treating or even preventing chronic myeloid leukemia (CML), a lethal cancer.

In research published in the journal Nature Genetics, the researchers also showed that an asthma medication for human patients is an effective treatment for CML in mice.

The gene, Alox5, processes essential fatty acids to leukotrienes, which are important agents in the inflammatory response. But according to the researchers, Alox5 has a more sinister side. It is vital to the development and maintenance of cancer stem cells.

Cancer stem cells are slow-dividing cells that are thought to give rise to a variety of cancers, including leukemia, and to be critical for maintaining them. Researchers theorize that cancer stem cells must be targeted for effective treatment of many cancers, but direct evidence is still lacking.

The researchers found that CML did not develop in mice without Alox5 because of impaired function of leukemia stem cells. Also, Alox5 deficiency did not affect normal stem cell function, providing the first clear differentiation between normal and cells.

Li also treated mice with CML with Zileuton, an asthma medication that inhibits the Alox5 inflammation pathway, as well imatinib, commonly known as , the most effective current leukemia medication. Imatinib effectively treated CML, but Zileuton was more effective. The two drugs combined provided an even better therapeutic effect.

The Jackson Laboratory is seeking patent protection on the novel approach to treat CML that Li and colleagues have demonstrated.

The exact mechanism for the Alox5 gene in regulating the function of leukemia stem cells but not normal stem cells needs further study, but it appears that the two types of stem cells employ different pathways for self-renewal and differentiation. The findings provide a new focus of study into how leukemia stem cells are distinct from normal stem cells and how they can be targeted in cancer therapies. A future clinical trial targeting Alox5 will provide the first anti-stem cell strategy in cancer therapy. It is likely that other cancer will have specific pathways that also differentiate them from their normal stem cell counterparts.

Source: Jackson Laboratory

Explore further: Team identifies source of most cases of invasive bladder cancer

add to favorites email to friend print save as pdf

Related Stories

UCLA researchers identify leukemia stem cells

May 27, 2008

Stem cell researchers at UCLA have identified a type of leukemia stem cell and uncovered the molecular and genetic mechanisms that cause a normal blood stem cells to become cancerous.

Drug has ability to cure type of leukemia

Oct 03, 2007

In people with chronic myeloid leukemia (CML), the drug Imatinib has been shown to drive cancer into remission, but the disease often returns when treatment is stopped. New research by UC Irvine scientists indicates that ...

Recommended for you

Cancer stem cells linked to drug resistance

3 hours ago

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Unraveling the 'black ribbon' around lung cancer

Apr 17, 2014

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

JZippy
3 / 5 (2) Jun 07, 2009
Fascinating and exciting. I wish them well in their endeavors.
Birger
5 / 5 (1) Jun 08, 2009
Since these drugs are already on the market, I hope they can be put to clinical use against cancer immediately.

More news stories

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

How to keep your fitness goals on track

(HealthDay)—The New Year's resolutions many made to get fit have stalled by now. And one expert thinks that's because many people set their goals too high.

Cancer stem cells linked to drug resistance

Most drugs used to treat lung, breast and pancreatic cancers also promote drug-resistance and ultimately spur tumor growth. Researchers at the University of California, San Diego School of Medicine have discovered ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.