UF makes gene therapy advance in severe genetic disorder

May 28, 2009

A dog born with a deadly disease that prevents the body from using stored sugar has survived 20 months and is still healthy after receiving gene therapy at the University of Florida — putting scientists a step closer to finding a cure for the disorder in children.

Called glycogen storage disease type 1A, the genetic disease stops the body from being able to correctly store and use sugar between meals. In order to survive, children and adults with this disease must receive precise doses of cornstarch every few hours. The disease is even more dire in dogs, which must be fed sugar every 30 minutes to survive.

"Without treatment, these dogs all die," said David Weinstein, M.D., M.M.Sc., director of the UF Glycogen Storage Disease Program and co-investigator on the study. "People usually survive because they are fed so much as infants. But by 4 to 6 months of age, they will have developmental delays and a big liver. If it is diagnosed at that point, the kids can do fine. If it is not diagnosed, then the kids get exposed to recurrent low sugars, and they will end up with , seizures or they will die."

UF researcher Cathryn Mah, Ph.D., a member of the Powell Center and UF Genetics Institute, will present the findings at an American Society of Gene Therapy meeting this weekend in San Diego.

About one in 100,000 children have this severe form of glycogen storage disease. Children receive doses of cornstarch at scheduled intervals throughout the day because it metabolizes more slowly than other carbohydrates. Until this therapy was discovered about 30 years ago, most children born with this disease did not survive past .

Glycogen storage disease type 1A stems from a faulty enzyme that doesn't convert stored sugar, or glycogen, to , the type of sugar the body uses for energy. This prevents the body from getting the energy it needs and causes glycogen to build up in the liver.

The goal of gene therapy is to restore the faulty enzyme so the body uses sugar properly, said Mah, a UF assistant professor of pediatric cellular and molecular therapy and a co-investigator on the study.

The dog, which comes from a line of dogs genetically prone to the disease, received its first dose of gene therapy the day after it was born, Mah said. The dog improved at first, often going as long as two to three hours without needing additional glucose to supplement its diet. But several weeks later the progress stopped.

When the dog was 5 months old, the researchers administered another dose of gene therapy, this time using a different type of AAV. Six weeks after the therapy, the dog was completely weaned off glucose supplements.

"We have never had to use any glucose supplementation since we weaned her off," Mah said. "She just gets fed normal dog food. That is a huge improvement in quality of life."

A few years ago, when Weinstein, Mah and other UF and National Institutes of Health collaborators began discussing the project, the longest a dog with the disease had lived was 28 days. The dog treated at UF is now 20 months old.

"The success is beyond what I would have imagined at this stage," Weinstein said. "To have a dog off treatment for 14 months that is clinically doing great with outstanding lab results is beyond what I even dreamt about."

Researchers hope to eventually establish a clinical trial in humans, but for now would like to test gene therapy in dogs again within the next year, Weinstein said.

"This is very exciting work and holds great promise for treatment of the disease in humans," said Joseph Wolfsdorf, M.B., B.Ch., a pediatric endocrinologist at Children's Hospital Boston and professor of pediatrics at Harvard Medical School who studies glycogen storage disease in children.

Finding better treatments for the glycogen storage disease is crucial because the disorder is still associated with multiple complications, and care remains a challenge. As a result of the lack of expertise in this condition, children and adults also must travel to special centers for care. With more than 300 patients from 18 countries, UF's Glycogen Storage Disease Program is the largest in the world.

Source: University of Florida (news : web)

Explore further: Goat to be cloned to treat rare genetic disorder

add to favorites email to friend print save as pdf

Related Stories

Treatment discovered for deadly childhood disease

Dec 06, 2006

Researchers have discovered that a treatment involving enzyme replacement therapy dramatically reduces the risk of death in children with Pompe disease, a rare genetic disorder in which most children die before their first ...

Master gene plays key role in blood sugar levels

Nov 27, 2008

When mice that lack steroid receptor-2 (SRC-2) – a master regulator gene called a coactivator – fast for a day, their blood sugar levels plummet. If they go another day without food, they will die.

Recommended for you

Researchers transplant regenerated oesophagus

19 hours ago

Tissue engineering has been used to construct natural oesophagi, which in combination with bone marrow stem cells have been safely and effectively transplanted in rats. The study, published in Nature Communications, shows ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...