Stem cell breakthrough gets closer to the clinic

May 28, 2009 by Mira Oberman
Embryonic stem cells are pictured through a microscope viewfinder in a laboratory. The quest for versatile, grow-in-a-dish transplant tissue took a step towards clinical use Thursday when researchers announced they have found a safe way to transform skin cells into stem cells.

The technology for versatile, grow-in-a-dish transplant tissue took a step toward clinical use Thursday when researchers announced they have found a safe way to turn skin cells into stem cells.

Researchers say the method is so promising they hope to apply for approval to begin clinic trials by the middle of next year.

"This is the first safe method of generating patient specific stem cells," said study author Robert Lanza, the chief scientific officer at Stem Cell & Regenerative Medicine International.

"This technology will soon allow us to expand the range of possible stem cell therapies for the entire human body," Lanza told AFP.

"This allows us to generate the raw material to solve the problem of rejection (by the immune system) so this is really going to accelerate the field of regenerative medicine."

The research builds on an award-winning breakthrough in 2007 by Shinya Yamanaka of Kyoto University.

Yamanaka and his team introduced four genes into skin cells, reprogramming them so that they became indistinguishable from embryonic stem cells.

That achievement conjured the distant vision of an almost limitless source of transplant material that would be free of controversy, as it would entail no cells derived from embryos.

But the downside of the technique for creating these so-called induced pluripotent stem cells (iPS) is that the genes are delivered by a "Trojan horse" virus.

Reprogramming cells using a virus modifies their DNA in such a way that they cannot be given to patients without boosting the risk of cancer and genetic mutation.

Other researchers have succeeded in delivering the genes with a method called DNA transfection or using a chemical wash, but these techniques also posed health risks.

Lanza and the team led by Kwang Soo Kim of Harvard University succeeded in delivering the genes by fusing them with a cell penetrating peptide which does not pose the risk of genetic mutation.

While this method took twice as long to generate pluripotent stem cells, Lanza said he believes his team can increase the efficiency of the transmission by purifying the protein.

The study was published in the online edition of Cell Stem Cell.

Stem cells have excited huge interest over the past decade.

Promoters say this material could reverse cancer, diabetes, Alzheimer's and other diseases and also allow researchers to grow patient-specific organ and tissue transplants which will not require harmful anti-rejection drugs.

But the dynamic has been sapped by opposition from religious conservatives, who argue that research on embryos -- the prime source of stem cells so far -- destroys human life.

Generating stem cells from bypasses the controversy and also dramatically increases the availability of patient-specific .

(c) 2009 AFP

Explore further: Top Japan lab dismisses ground-breaking stem cell study

add to favorites email to friend print save as pdf

Related Stories

Study: Skin cells turned into stem cells

Aug 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

El_Nose
not rated yet May 28, 2009
any word yet if the FDIC is still trying to imply that gene therapy is a drug and fall under their guidlines??
Hyperion1110
not rated yet May 28, 2009
LOL...the Federal Deposit Insurance Corporation is going to regulate gene therapy?!

I think you mean the FDA (Food and Drug Administration).
Gresh
not rated yet May 29, 2009
This is really good news!

Though I'm not religious, I've always felt that embryonic stem cell therapies are not a path that medical science should explore. Using skin cells and reverting them to iPS's side steps this entire issue and allows tissue to be grown that is a perfect match to the patient.

So lets hope they get the funding they need. It will be sad that I'm not longer able to help people by giving blood products though...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.