Flipping the brain's addiction switch without drugs

May 28, 2009

When someone becomes dependent on drugs or alcohol, the brain's pleasure center gets hijacked, disrupting the normal functioning of its reward circuitry.

Researchers investigating this addiction "switch" have now implicated a naturally occurring protein, a dose of which allowed them to get rats hooked with no drugs at all.

The research will be published Friday in the journal Science.

"If we can understand how the brain's circuitry changes in association with drug abuse, it could potentially suggest ways to medically counteract the effects of dependency," said Scott Steffensen, a neuroscientist at Brigham Young University who co-authored the study with two of his undergraduate students, one of his grad students, and a team of researchers at the University of Toronto.

Chronic drug users, as noted by previous research, can experience an increase of a naturally-occurring protein called BDNF (brain-derived neurotrophic factor) in the brain's reward circuitry, a region scientists call the ventral tegmental area. In this study, the researchers took the drugs out of the equation and directly infused extra BDNF onto this part of the brain in rats.

The Toronto team noted that a single injection of BDNF made rats behave as though they were dependent on opiates (which they had never received). Though rats instinctively prefer certain smells, lighting and texture, these left their comfort zone in search of a fix.

"This work may reveal a mechanism that underlies ," said lead author Hector Vargas-Perez, a neurobiologist at the University of Toronto.

The BYU team confirmed that the protein is a critical regulator of drug dependency. After the BDNF injection, specific chemicals that normally inhibit neurons in this part of the brain instead excited them, a "switch" known to occur when people become dependent on drugs.

Steffensen, who teaches in BYU's psychology department, says this work suggests that BDNF is crucial for inducing a drug dependent state, one important aspect of addiction.

Source: Brigham Young University (news : web)

Explore further: Stem cells faulty in Duchenne muscular dystrophy

add to favorites email to friend print save as pdf

Related Stories

Gene therapy reduces cocaine use in rats

Apr 16, 2008

Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have shown that increasing the brain level of receptors for dopamine, a pleasure-related chemical, can reduce use of cocaine by 75 percent in rats ...

Brain chemistry ties anxiety and alcoholism

Mar 04, 2008

Doctors may one day be able to control alcohol addiction by manipulating the molecular events in the brain that underlie anxiety associated with alcohol withdrawal, researchers at the University of Illinois at Chicago College ...

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

9 hours ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

14 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

15 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.