Researchers discover new glucose-regulating protein linked with diabetes

May 28, 2009

Researchers at the University of California, San Francisco, and collaborators at Harvard Medical School have linked a specialized protein in human muscles to the process that clears glucose out of the bloodstream, shedding light on what goes wrong in type 2 diabetes on a cellular level.

Establishing the function of this protein, which significantly is not present in mice, has broad implications for both the future study and possible therapies for diabetes, according to an article published in the May 29, 2009 issue of the journal "Science."

While a significant amount of research into diabetes and many other diseases is conducted in mice, the often-unknown differences between mice and men can create obstacles to direct translation of such research and need to be taken into account in understanding the progression of human disease, according to the researchers.

"Much has been learned from mouse models about that is relevant to human diabetes, but what happens on a cellular level is now found to be different between the two species," said Frances Brodsky, DPhil, senior author on the paper and a UCSF professor in the Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology. "This research shows one significant species-specific difference that will influence our understanding of mechanisms of type 2 diabetes."

In humans, muscles play a key role in clearing glucose from the , Brodsky explained. In normal function, this is controlled by insulin, which stimulates the muscle cells to import glucose by means of a system known as the GLUT4 glucose transporter.

Normally, she said, GLUT4 is stored inside both human and mouse muscles in a special compartment that releases it upon insulin stimulation. also form a GLUT4 compartment and take up glucose in response to insulin. In type 2 diabetes, however, the muscle and fat cells fail to respond appropriately to the insulin and the GLUT4 compartment is abnormal. This process was thought to be identical across mammal species.

The current research identified a protein in both human muscle and fat cells, called CHC22, which appears to control the formation of the GLUT4 storage compartments.

The team determined that this protein is a specialized form of a ubiquitous housekeeping protein called clathrin, which Brodsky has studied since the 1980s and is known to be instrumental in moving proteins between cellular compartments. CHC22 was observed to be associated with the abnormal GLUT4 compartments in muscles from diabetic patients which, for some reason, do not mobilize to the muscle cell surface when stimulated by insulin.

Notably, she said, while mice also have an insulin-responsive GLUT4 compartment, they lack the CHC22 protein. As a result, this work has implications for developing better models for the study of .

The paper highlights the differences between humans and mice and offers insights into aspects of the GLUT4 transport mechanism within cells that are specialized in humans, according to a commentary on the paper that appears in the same journal.

Brodsky said the Harvard team on this research produced the mouse capable of expressing CHC22 in its muscles and fat, which was analyzed in the study. These mice have features of diabetes, because the protein disrupts their GLUT4 transport pathway, which normally operates without CHC22. Also instrumental to the study was a human muscle cell line produced by the collaborator at University of Texas Southwestern.

Source: University of California - San Francisco

Explore further: Jumping hurdles in the RNA world

add to favorites email to friend print save as pdf

Related Stories

Apelin hormone injections powerfully lower blood sugar

Nov 04, 2008

By injecting a hormone produced by fat and other tissues into mice, researchers report in the November Cell Metabolism that they significantly lowered blood sugar levels in normal and obese mice. The findings suggest that t ...

Completely novel action of insulin unveiled

Nov 05, 2008

A PhD student at Sydney's Garvan Institute of Medical Research has uncovered an important piece in the puzzle of how insulin works, a problem that has plagued researchers for more than 50 years. This finding brings us one ...

Exercise pivotal in preventing and fighting type II diabetes

Feb 07, 2007

One in three American children born in 2000 will develop type II diabetes, according to the U.S. Centers for Disease Control and Prevention (CDC). A new study at the University of Missouri-Columbia says that acute exercise ...

Fat cells send message that aids insulin secretion

Nov 06, 2007

The body's fat cells help the pancreas do its job of secreting insulin, according to research at Washington University School of Medicine in St. Louis. This previously unrecognized process ultimately could lead to new methods ...

Recommended for you

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

New computer model sets new precedent in drug discovery

Nov 18, 2014

A major challenge faced by the pharmaceutical industry has been how to rationally design and select protein molecules to create effective biologic drug therapies while reducing unintended side effects - a challenge that has ...

Finding new ways to make drugs

Nov 18, 2014

Chemists have developed a revolutionary new way to manufacture natural chemicals and used it to assemble a scarce anti-inflammatory drug with potential to treat cancer and malaria.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.