Research suggests new cellular targets for HIV drug development

May 27, 2009

Focusing HIV drug development on immune cells called macrophages instead of traditionally targeted T cells could bring us closer to eradicating the disease, according to new research from University of Florida and five other institutions.

In the largest study of its kind, researchers found that in diseased cells — such as — that are also infected with , almost all the virus was packed into macrophages, whose job is to "eat" invading disease agents.

What's more, up to half of those macrophages were hybrids, formed when pieces of genetic material from several parent HIV viruses combined to form new strains.

Such "recombination" is responsible for formation of mutants that easily elude immune system surveillance and escape from anti-HIV drugs.

"Macrophages are these little factories producing new hybrid particles of the virus, making the virus probably even more aggressive over time," said study co-author Marco Salemi, Ph.D., an assistant professor in the department of pathology, immunology and laboratory medicine at the UF College of Medicine. "If we want to eradicate HIV we need to find a way to actually target the virus specifically infecting the macrophages."

The work was published recently in the journal .

At least 1.1 million people in the United States and 33 million in the world are living with HIV/AIDS, according to the Kaiser Family Foundation.

The researchers set out to see if HIV populations that infect abnormal tissues are different from those that infect normal ones, and whether particular strains are associated with certain types of illness.

They tackled the question using frozen post-autopsy tissue samples, pathology results and advanced computational techniques. They analyzed 780 HIV sequences from 53 normal and abnormal tissues from seven patients who had died between 1995 and 2003 from various AIDS-related conditions, including HIV-associated dementia, non-Hodgkin's lymphoma and generalized infections throughout the body. Four patients had been treated with highly active antiretroviral therapy, called HAART, at or near the time of death.

The researchers compared brain and lymphoma tissues, which had heavy concentrations of macrophages, with lymphoid tissues — such as from the spleen and lymph nodes— that had a mix of HIV-infected macrophages and T cells.

The analyses revealed great diversity in the HIV strains present, with different tissues having hybrid viruses made up of slightly different sets of genes. A high frequency of such recombinant viruses was also found in tissues generally associated with disease processes, such as the meninges, spleen and lymph nodes.

The researchers concluded that HIV-infected macrophages might be implicated in tumor-producing mechanisms.

The higher frequency of recombinant virus in diseased tissues likely is because macrophages multiply as a result of an inflammatory response, the researchers said.

"The study points to macrophages as a site of recombination in active disease," said neurobiologist Kenneth C. Williams, Ph.D., a Boston College associate professor and expert who was not involved in the study. "So people can say this is one spot where these viruses come from."

T cells — the so-called conductors of the immune system orchestra, whose decline is the hallmark of HIV disease — are an obvious target for HIV drug development because they die soon after infection, and are readily sampled from the blood and cultured. But although current drugs are effective at blocking infection of new cells and lowering viral loads to barely detectable levels, they never reduce the viral level in an infected person to zero.

"Where is it coming from?" said Michael S. McGrath, the University of California, San Francisco, professor who led the research team. "We believe it's coming from these macrophages."

, like T cells, can be infected multiple times by HIV. But unlike T cells, when they get infected, they don't die within days, but live for several months, all the while being re-infected with multiple viruses of different genetic makeup. That situation is ripe for the emergence of hybrids.

"Most people who look at viral sequences assume that evolution of the virus is linear. In the real world that doesn't happen — large parts of the virus are swapped in and out. This group has shown that in this model," Williams said. "It sort of overturns the old way of trying to match virus sequence with pathology."

McGrath's group is now developing macrophage-targeting drugs that, through a grant from the National Institute of Mental Health, should be in human clinical trials in a few years.

"This is one of the last frontiers — killing off what we believe is a so far untouched reservoir," he said.

Source: University of Florida (news : web)

Explore further: Point-of-care CD4 testing is economically feasible for HIV care in resource-limited areas

add to favorites email to friend print save as pdf

Related Stories

Human testis harbors HIV-1 in resident immune cells

Nov 27, 2006

Researchers have demonstrated HIV replication within resident immune cells of the testis, providing an explanation for the persistence of virus in semen even after effective highly active antiretroviral therapy. The related ...

Neural progenitor cells as reservoirs for HIV in the brain

Mar 04, 2008

Impaired brain function is a prominent and still unsolved problem in AIDS . Shortly after an individual becomes infected with HIV, the virus can invade the brain and persist in this organ for life. Many HIV-infected individuals ...

Scientists find another key to HIV success

Mar 22, 2006

Weill Cornell Medical College scientists say they've determined a protein produced by HIV infected cells prevents immune B cells from producing antibodies.

AIDS resistance secret may be in blood

Feb 12, 2007

U.S. scientists say the absence of a specific marker in the blood and tissues of certain monkeys might be part of the key to understanding AIDS resistance.

Exhausted B cells fail to fight HIV

Jul 14, 2008

HIV tires out the cells that produce virus-fighting proteins known as antibodies, according to a human study that will be published online July 14 in the Journal of Experimental Medicine.

Recommended for you

The genetics of coping with HIV

23 hours ago

We respond to infections in two fundamental ways. One, which has been the subject of intensive research over the years, is "resistance," where the body attacks the invading pathogen and reduces its numbers. Another, which ...

Long acting HIV drugs to be developed

Sep 11, 2014

HIV drugs which only need to be taken once a month are to be developed at the University of Liverpool in a bid to overcome the problem of 'pill fatigue'.

Puerto Rico partners on US HIV vaccine project

Sep 10, 2014

Puerto Rico's governor says the island's largest public university is partnering with federal agencies to oversee a U.S.-funded project aimed at trying to develop a prophylactic vaccine for the HIV virus that causes AIDS.

User comments : 0