Understanding plants' overactive immune system will help researchers build better crops

May 27, 2009
Wild-type Arabidopsis is pictured on the left and srfr1-3 mutant with constitutively activated pathogen defenses and severely reduced biomass is on the right. Credit: Photo courtesy of Dr. Walter Gassmann.

A plant's immune system protects the plant from harmful pathogens. If the system overreacts to pathogens, it can stunt plant growth and reduce seed production. Now, University of Missouri researchers have identified important suppressors that negatively regulate the responses of the immune system in the plant species Arabidopsis thaliana. Understanding the immune system of plants would allow breeders to create better yielding crop plants.

"The provides plants with strong protection from ," said Walter Gassmann, associate professor of plant sciences in the MU Christopher S. Bond Life Sciences Center and the College of Agriculture, Food and Natural Resources. "However, this response has the potential to be highly deleterious to the plant and needs to be tightly controlled. Certain suppressors protect the plant from responding to harmless stimuli and from overreacting to pathogens. If there is a mutation in these suppressors, the immune system can actually do more damage than good."

One way that plants fight pathogens is through effector-triggered immunity (ETI), which relies on the detection of pathogen effector proteins (proteins that are deployed by pathogens to interfere with the plant immune system). After the detection of a pathogen, specific proteins in the plant, known as resistance proteins, elicit an effective defense response. The plants' resistance proteins are regulated by suppressors to achieve minimal side effects to the plant while providing optimal responses to pathogens. However, when the ETI is overly activated, it can cause stunted growth and poor seed production.

In the study, MU researchers examined plants with that resulted in heightened plant immunity. By examining this mutation, researchers were able to identify specific genetic components that may negatively regulate the immune system and thus contribute to an appropriate immune response.

"The general control of effector-triggered signaling is poorly understood," Gassmann said. "Better insight into the immune system response will allow us to develop with more durable safeguards against pathogens."

Gassmann's research has been published recently in The Plant Journal and Plant Signaling & Behavior. The papers were co-authored by former post-doctoral researcher Soon Il Kwon, current graduate student Sang Hee Kim, current post-doctoral researcher Saikat Bhattacharjee, and former visiting scientist Jae-Jong Noh.

Source: University of Missouri-Columbia (news : web)

Explore further: Researchers find fish 'yells' to be heard over human made noise

add to favorites email to friend print save as pdf

Related Stories

Tomato stands firm in face of fungus

May 09, 2008

Scientists at the University of Amsterdam have discovered how to keep one’s tomatoes from wilting – the answer lies at the molecular level. The story of how the plant beat the pathogen, and what it means for combating ...

Crossing the species line

Jan 31, 2008

A recent article published in Developmental and Comparative Immunology, the official journal of the International Society of Developmental and Comparative Immunology (ISDCI), draws attention to the fact that the plant immune ...

Pathogen virulence proteins suppress plant immunity

Apr 21, 2008

Researchers from the Virginia Bioinformatics Institute (VBI) at Virginia Tech and their colleagues have identified a key function of a large family of virulence proteins that play an important role in the production of infectious ...

Plant Sacrifices Cells to Fight Invaders

May 20, 2005

Gene ensures programmed cell suicide does not go unchecked Researchers recently discovered a gene essential to one of the plant kingdom's key immune responses--programmed cell death (PCD). Plants use PC ...

Recommended for you

Explainer: How do homing pigeons navigate?

1 hour ago

Pigeons have extraordinary navigational abilities. Take a pigeon from its loft and let it go somewhere it has never been before and it will, after circling in the sky for while, head home. This remarkable ...

Ravens understand the relations among others

2 hours ago

Like many social mammals, ravens form different types of social relationships – they may be friends, kin, or partners and they also form strict dominance relations. From a cognitive perspective, understanding ...

User comments : 0

More news stories

Ravens understand the relations among others

Like many social mammals, ravens form different types of social relationships – they may be friends, kin, or partners and they also form strict dominance relations. From a cognitive perspective, understanding ...

Male-biased tweeting

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...

High-calorie and low-nutrient foods in kids' TV

Fruits and vegetables are often displayed in the popular Swedish children's TV show Bolibompa, but there are also plenty of high-sugar foods. A new study from the University of Gothenburg explores how food is portrayed in ...