New therapy substitutes missing protein in those with muscular dystrophy

May 26, 2009

Researchers at the University of Minnesota Medical School have discovered a new therapy that shows potential to treat people with Duchenne muscular dystrophy, a fatal disease and the most common form of muscular dystrophy in children.

In the , researchers were able to substitute for the missing protein - dystrophin, which forms a key part of the framework that holds together - that results in the disease, effectively repairing weakened muscle tissue.

Researchers injected dystrophic mice with a protein called utrophin - a very close relative of dystrophin - that was modified with a cell-penetrating tag, called TAT.

The study is the first to establish the efficacy and feasibility of the TAT-utrophin-based protein as a viable therapy for the treatment of as well as diseases caused by loss of dystrophin.

The research is published in the May 26, 2009 issue of PLoS Medicine.

"This unique approach can replace the missing protein without the complexities of gene replacement or stem cell approaches," said James Ervasti, Ph.D., principal investigator of the study and a professor in the Department of Biochemistry, & Biophysics.

Muscular dystrophy causes the muscles in the body to progressively weaken. Duchenne is the most common and severe form of childhood muscular dystrophy. About one of 3,500 boys are born with the crippling disease. Symptoms usually begin in children who are 2 to 3 years-old, most are in a wheelchair by age 12, and many who have the disease pass away by their late teens to early 20s. Current treatment, limited to corticosteroids, are minimally effective and can cause serious side effects.

Research underway to battle muscular dystrophy with gene therapy and stem cell treatment shows promise, but major hurdles must be overcome before these approaches are viable in human patients, Ervasti said.

Delivering treatment to every muscle cell via gene therapy or is difficult because muscle tissue makes up such a large portion of the human body. Furthermore, the immune system may reject the cell or gene treatment because patients would treat the newly introduced cells or genes as a foreign substance.

Ervasti's method may conquer both of those problems. Upon injection, the TAT-utrophin combination spreads around the entire body efficiently and is able to penetrate the muscle cell wall to substitute for missing dystrophin. Because every cell in the body makes utrophin naturally, TAT-utrophin circumvents immunity issues associated with other therapeutic approaches.

"Our replacement approach most directly and simply addresses the cause of Duchenne muscular dystrophy," Ervasti said.

This new method is not a cure for muscular dystrophy. Rather, it would be a therapy most likely administered on a regular basis. If the treatment works in larger animal models and humans, it's most likely researchers would develop a drug for patients. Ervasti is hopeful the therapy can move into human clinical trials within 3 years.

Source: University of Minnesota (news : web)

Explore further: Tackling illness in premature babies with genetics and artificial noses

add to favorites email to friend print save as pdf

Related Stories

Researchers develop mouse model for muscle disease

Sep 05, 2006

Researchers from the University of Minnesota have identified the importance of a gene critical to normal muscle function, resulting in a new mouse model for a poorly understood muscle disease in humans.

Sarcospan, a little protein for a big problem

Nov 03, 2008

The overlooked and undervalued protein, sarcospan, just got its moment in the spotlight. Peter et al. now show that adding it to muscle cells might ameliorate the most severe form of muscular dystrophy.

Scientist clears hurdles for muscular dystrophy therapy

Oct 29, 2008

Approximately 250,000 people in the United States have some form of muscular dystrophy. Duchenne muscular dystrophy (DMD) is the most common type of the disease, predominantly affecting males. Boys with DMD will lose the ...

Recommended for you

New pain relief targets discovered

7 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

7 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

10 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...