Scientists fight cancer with nanotechnology

May 21, 2009

(PhysOrg.com) -- Nanotechnology researchers at the University of Arkansas at Little Rock have developed a method of detecting, tracking, and killing cancer cells in real time with carbon nanotubes.

The discovery opens the prospect of a new, major front in the fight to eradicate cancer with promise for a new generation of cancer treatment beyond surgery, radiation, and chemotherapy.

Dr. Alex Biris, University of Arkansas at Little Rock (UALR) chief scientist at the Nanotechnology Center and assistant professor of applied science in University's Donaghey College of Engineering and Information Technology, and Dr. Vladimir P. Zharov, professor and director of the Phillips Classic Laser and Nanomedicine Laboratories in the University of Arkansas for Medical Sciences (UAMS) Winthrop P. Rockefeller Cancer Institute, published their findings in the latest issue of the Journal of Biomedical Optics.

“Until now, nobody has been able to fully understand and study in vivo and in real time how these nanoparticles travel through a living system,” Biris said. “By using Raman spectroscopy, we showed that it is possible not only to monitor and detect nanomaterials moving through the circulation, but also to detect single tagged with carbon nanotubes. In this way, we can measure their clearance rate and their biodistribution kinetics through the lymph and blood systems.”

Zharov emphasized that in vivo Raman flow cytometry is promising for the detection and identification of a broad spectrum of various nanoparticles with strong Raman scattering properties, such as cells, bacteria, and even viruses.

“Before any clinical application of nanoparticles, it is imperative to determine their pharmacological profiles,” Zharov said. “And this tool will provide this function as a supplement or even an alternative to the existing methods.”

In their research, Biris, Zharov, and UAMS colleague Ekaterina Galanzha, M.D., injected a single human cancer cell containing material in the tail vein of a test rat. They were able to follow the circulation of the carbon nanotubes in the blood vessels to the rat’s ear, tracking the cell through the rat’s blood stream, lymphatic system, and tissue with a Raman spectrometer.

In the same issue of the scientific journal, Biris and Zharov published a second paper discussing how nanoparticles can tag cancer cells. A laser then heats the nanoparticles, killing the cancer cell.

“If we are able to target cancer cells using these nanomaterials, we can monitor where the cancer cells are specifically located, and then we can kill them,” Biris said.

He said the live rat experiment shows how the cancer killing process leaves only a dead cell and nanoparticles that, within a matter of hours, disintegrate and die.

Dr. Mary Good, dean of UALR’s Donaghey College of Engineering and Information Technology, said the medical and economic ramifications of the discovery are significant.

“The research Dr. Biris and Dr. Zharov have conducted indeed is significant and promising,” said Good, former technology undersecretary of Commerce in the Clinton administration. “It points to a whole new direction for medical applications for nanoparticles. There still is extensive time needed for research into the ultimate utility for these approaches and for human subject experiments. But this early work is exciting and provides long-term hope for more effective treatments.”

Biris, 34, said the UALR Nanotechnology Center’s aim is to accelerate the development of commercial applications of nanotechnology and its potential to revolutionize medical advancements and the next generation of manufacturing of other products.

Provided by University of Arkansas at Little Rock

Explore further: Gold nanorods target cancer cells

add to favorites email to friend print save as pdf

Related Stories

Bio-nanotechnology to kill cancer cells

Nov 06, 2006

The University of Surrey has been awarded a grant of £420,000 to utilize nanotechnology to develop cancer treatments. The grant is part of an international project: “Multifunctional Carbon Nanotubes for Biomedical Applications ...

Carbon nanotube absorption measured in worms, cancer cells

Mar 28, 2006

University of Michigan researchers have discovered how to measure the absorption of multi-walled carbon nanoparticles into worms and cancer cells, a breakthrough that will revolutionize scientists' understanding of how the ...

Seeing Nanotubes Targeting Tumors In Vivo

Oct 27, 2008

Carbon nanotubes have significant potential for delivering both imaging and therapeutic agents to tumors, but there is still a need to better quantify how well these rolled-up sheets of graphite can target tumors. Now, thanks ...

Gold Nanoparticles May Simplify Cancer Detection

May 09, 2005

Binding gold nanoparticles to a specific antibody for cancer cells could make cancer detection much easier, suggests research at the Georgia Institute of Technology and the University of California at San ...

Nanoparticles Provide Detailed View Inside Living Animals

Apr 18, 2008

Using nanoparticles designed specifically to produce a bright Raman spectroscopic signal, a team of investigators at the Center for Cancer Nanotechnology Excellence Focused on Therapy Response (Stanford CCNE) has shown that ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
1 / 5 (1) May 22, 2009
MORE OF THE "KILLING INSTINCT" OF MEDICINE! NO! EXTRACT EXCESS ENERGY FROM A CELL AND IT MAY RETURN TO NORMAL OPERATION!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.