New genes implicated in high blood pressure

May 10, 2009

Researchers at the Johns Hopkins University School of Medicine, along with an international team of collaborators, have identified common genetic changes associated with blood pressure and hypertension. The study, reporting online next week in Nature Genetics, breaks new ground in understanding blood pressure regulation and may lead to advances in hypertension therapy.

"Strikingly, none of the we identified as having common variation are part of the system we know about that regulates - the genes identified are not the ones targeted by current prescription drugs to control hypertension," says Aravinda Chakravarti, Ph.D., head of the Center for Complex Disease Genomics in the McKusick-Nathans Institute of at Hopkins. "If we can increase the number of genes implicated in blood pressure maintenance from the current 12 to the expected 50 in the next year, our understanding of the biology will change completely."

Consistently elevated blood pressure increases the risk of stroke, heart attack and kidney failure, among other conditions. High blood pressure affects about 30 percent or more of adults and causes millions of deaths worldwide each year. While the environment (diet, physical activity, stress, etc.) affects blood pressure, genetics also plays a substantial role and, according to Chakravarti, may increase some people's risk of developing high blood pressure under specific environmental exposures; however, many genes involved in blood pressure regulation remain unknown.

To identify genes involved in blood pressure maintenance and hypertension, the researchers analyzed differences in the genomes of nearly 30,000 people of European descent whose average systolic blood pressures ranged from 118 mm Hg to 143 mm Hg and average diastolic blood pressures ranged from 72 mm Hg to 83 mm Hg. These individuals were part of a long-term study of cardiovascular health and disease supported by the National Institutes of Health called ARIC (Atherosclerosis Risk in Communities). The researchers looked for genetic differences that correlated with high blood pressure and found 11 variations or changes in DNA sequence that appear to regulate blood pressure levels.

Changes in one gene, ATP2B1, were linked to both blood pressure and hypertension. The gene ATP2B1 makes a protein that pumps calcium out of the cells that line the interior of blood vessels. Changes in SH2B3, a protein involved in the immune response, were also linked to increased blood pressure. Researchers also identified changes in genes involved in cell growth as well as genes necessary for correct heart development. Identifying genes in unexpected pathways emphasizes the many levels of precise , says Chakravarti.

According to Chakravarti, each of the genetic differences found is common in the population and causes only small changes in blood pressure. This study, he says, supports the idea that changes in many genes contribute to and hypertension. Chakravarti believes the combination of multiple changes in different genes may increase blood pressure significantly although the affect of each individual change on blood pressure is small.

"Hypertension is difficult to study; it is a trait, not a disease per se unless left untreated, and many things contribute to it," says Chakravarti. "These findings identify more pathways important for blood pressure maintenance and may lead to improvements in hypertension therapy and the formation of early detection systems."

More information: www.nature.com/ng/index.html

Source: Johns Hopkins Medical Institutions

Explore further: First genetic link discovered to difficult-to-diagnose breast cancer sub-type

add to favorites email to friend print save as pdf

Related Stories

Blood pressure levels in childhood track into adulthood

Jun 16, 2008

High blood pressure in childhood is associated with higher blood pressure or hypertension in adulthood, according to a study by researchers at the Johns Hopkins Bloomberg School of Public Health. Their analyses of previously ...

Recommended for you

Refining the language for chromosomes

7 hours ago

When talking about genetic abnormalities at the DNA level that occur when chromosomes swap, delete or add parts, there is an evolving communication gap both in the science and medical worlds, leading to inconsistencies in ...

Down's chromosome cause genome-wide disruption

Apr 16, 2014

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

User comments : 0

More news stories

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Our brains are hardwired for language

A groundbreaking study published in PLOS ONE by Prof. Iris Berent of Northeastern University and researchers at Harvard Medical School shows the brains of individual speakers are sensitive to language univer ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...