Sniffing Out the Physical Condition of Conspecifics

May 07, 2009
Schematic sketch of the head of a mouse showing the vomeronasal organ including neural connections into the rhinencephalon. Bottom: fluorescent microscopic view of the section of the VNO (overview left, detailed presentation right-hand side). The “green” fluorescence originates from the stimulation of a green fluorescent protein (GFP) which had been introduced into the VNO neurons by genetic procedures.

To date, it has been unknown exactly how mammals are capable of sniffing out whether a conspecific is ill. The biologists Prof. Marc Spehr and Daniela Flügge are following a good lead. They have discovered that a messenger substance of the immune system that attracts defence cells to the affected site in bacterial infections also responds to receptors in the vomeronasal organ (VMO, Jacobson's organ). This organ, which has hardly been studied to date, reacts to pheromones and is also held responsible for spontaneous aversion or attraction when selecting a partner. The results of this study on the newly detected receptor family FPR (formyl peptide receptor) within the olfactory system have been published in the current Internet edition of Nature.

Detecting and evaluating the quality of foodstuffs, remote perception of possible hazards, the recognition of territorial boundaries or subconscious activation of memories considered forgotten - the sense of smell (olfactory mechanism) supplies an abundance of important information. The scent signals between conspecifics are of particular significance for their social and sexual communication. The majority of mammals perceive such chemosensors, often referred to as pheromones, via a specific sensory organ, the vomeronasal organ (VNO).

The VNO, located at the base of the nasal septum, is a small tubular lined with many thousands of neurons. The neurons in the VNO “perceive” pheromones with the aid of specific proteins, so-called vomeronasal receptors. Mice are known to have about 300 different types of these receptors, which can roughly be divided into two protein families - so-called V1R and V2R receptors.

One of the many capabilities of the olfactory sense of many mammals is that it enables them to draw conclusions on the physical condition of conspecifics based on their specific odour. Prof. Spehr stated that just how the olfactory sense achieves this task, and which processes are active in the individual neurons during the course thereof, is one the most challenging and interesting aspects of modern neurobiology and sensory biology. He, in close collaboration with the neurogenetic research group under the auspices of Prof. Ivan Rodriguez at the University in Geneva, and his colleague Daniela Flügge have now managed to identify a new family of VNO receptor proteins and to investigate their function.

To date, the proteins designated as formyl peptide receptors (FPR) were considered special proteins of the immune system. They are the receptors that initiate targeted movement (chemotaxis) of specific immune cells (granulocytes) to the site of infection during inflammatory reactions after bacterial infections. In the process thereof, the receptors are activated by bacterial degradation products, including the so-called formyl peptides. 

FPRs, just like the vomeronasal V1R and V2R proteins, are members of the group of so-called G protein-linked receptors. With the aid of activity measurements using a fluorescent microscope, the German-Swiss research group was now able to demonstrate not only the existence of five such in the olfactory organ of mammals, but also to elucidate significant aspects of their function at this site. Flügge and Spehr were able to show that, amongst other things, the same bacterial substances that trigger an immune reaction can also activate vomeronasal neurons.

The bonding of the bacterial peptides onto FPRs leads to a short-term increase in the potassium concentration in the neurons. This signal subsequently leads to electrical discharge of the cells. The bacterial degradation products that develop during the inflammatory reaction are also excreted in diverse bodily secretions, thus the scientists are of the opinion that they have found an important pathway that enables an individual to assess the physical condition of its vis-à-vis based on the latter’s body odour.    

More information: Formyl receptors-like are a novel family of vomeronasal chemosensors. In: NATURE, online am 22.4.2009, DOI: 10.1038/nature08029

Source: Ruhr-Universitaet-Bochum (news : web)

Explore further: Orchid named after UC Riverside researcher

add to favorites email to friend print save as pdf

Related Stories

How a baby's nose knows Mom's scent

Jul 06, 2005

For newborn mammals, including humans, identifying Mom by her odor can be critical to maternal bonding and survival. However, researchers have not understood how this odor identification develops. Now, Kevin Franks and Jeffry ...

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

12 hours ago

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...