Nanoparticles May Help Optimize Chemotherapy

May 06, 2009 by Laura Mgrdichian weblog

(PhysOrg.com) -- A research group reported recently in the Proceedings of the National Academy of Sciences that they have engineered nanoparticles to help block a protein process that takes place in tumors, making the tumors more susceptible to chemotherapy treatment.

The protein process, a series of chemical reactions officially known as the mitogen activated protein kinase (MAPK) signal transduction cascade, plays a role in many cellular functions, including cell growth and development, cell division, and death. Inhibiting the cascade in tumor cells slows their growth and makes them easier to kill via chemotherapy.

The MAPK cascade is the focus of much study because of its role in turning healthy cells into tumor cells and regulating tumor-cell functions. Because one drawback of chemotherapy is that it tends to kill normal cells along with malignant ones, interrupting the MAPK cascade in could lead to cancer therapies that are more targeted and don't induce as many side effects, which tend to leave cancer patients so sick.

In this case, the researchers, from Harvard Medical School and National Chemical Laboratories, in India, designed nanoparticles from a material that chemically bond to a MAPK inhibitor, a molecule that disrupts the MAPK cascade.

When "ingest" the nanoparticles through the cell membrane, the particles release the inhibitor. In mice with melanoma, a cancer typically found in skin, this method slowed the growth of the tumors and increased the effectiveness of the chemotherapy drug they were given, cisplatin, which is used to treat most cancers. With further research, this work could lead to more successful chemotherapy treatments in humans.

Notably, this work is the first published report of a MAPK inhibition method that has been combined with nanoparticle-based tumor targeting, another area that shows promise for cancer treatments. The research opens a door to the use of nanoparticles and other nanostructures as vehicles for blocking or interrupting the processes that cause tumors to grow.

For more information: Sudipta Basu, Rania Harfouche, Shivani Soni, Geetanjali Chimote, Raghunath A. Mashelkar, and Shiladitya Sengupta (April 21, 2009) Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0902857106

© 2009 PhysOrg.com

Explore further: 'Stealth' nanoparticles could improve cancer vaccines

add to favorites email to friend print save as pdf

Related Stories

A more direct delivery of cancer drugs to tumors

Apr 21, 2009

(PhysOrg.com) -- An interdisciplinary team of researchers at Brigham and Women’s Hospital (BWH) and the Harvard-MIT Division of Health Sciences and Technology (HST) has demonstrated a better way to deliver ...

Targeted Nanoparticles Destroy Prostate Tumors

Apr 25, 2006

Biodegradable polymer nanoparticles, linked to a protein-binding nucleic acid known as an aptamer and loaded with the anticancer agent docetaxel, can target and kill prostate tumors growing in mice. Using this targeted nanoparticle ...

An Achilles heel in cancer cells

Dec 08, 2008

A protein that shields tumor cells from cell death and exerts resistance to chemotherapy has an Achilles heel, a vulnerability that can be exploited to target and kill the very tumor cells it usually protects, researchers ...

Iron oxide nanoparticles may help detect, treat tumors

May 01, 2006

A new technique devised by MIT engineers may one day help physicians detect cancerous tumors during early stages of growth. The technique allows nanoparticles to group together inside cancerous tumors, creating masses with ...

Recommended for you

'Stealth' nanoparticles could improve cancer vaccines

10 hours ago

Cancer vaccines have recently emerged as a promising approach for killing tumor cells before they spread. But so far, most clinical candidates haven't worked that well. Now, scientists have developed a new ...

Nanoparticles accumulate quickly in wetland sediment

10 hours ago

(Phys.org) —A Duke University team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

KBK
not rated yet May 06, 2009
The stat that I am aware of is that 90% of those who try chemotherapy---die anyway. Alternatives are the way to go.

Imagine taking coin flip chances with your life, and doing so with coin flip ratios that are stacked against you. As a matter of fact, those who try the coin flip method...9 out of 10 who attempt that gauntlet--die. That's chemotherapy.