Scientists develop first fully automated pipeline for multiprotein complex production

May 04, 2009

Most cellular processes are carried out by molecular machines that consist of many interacting proteins. These protein complexes lie at the heart of life science research, but they are notoriously hard to study. Their abundance is often too low to extract them directly from cells and generating them with recombinant methods has been a daunting task.

A new technology to produce multiprotein complexes, developed by researchers at the European Molecular Biology Laboratory (EMBL) in Grenoble, France, and the Paul Scherrer Institute (PSI) in Villigen, Switzerland, now makes the biologist's life easier.

In a paper published in the current issue of researchers of the groups of Imre Berger at EMBL and Michel Steinmetz at the PSI describe ACEMBL, the first fully automated for the production of multiprotein complexes. Requiring much less effort and materials, the new pipeline will speed up structural studies of protein complexes and will allow to decipher as yet elusive molecular mechanisms of health and disease.

ACEMBL can produce complexes consisting of different types of components, including protein, RNA and other biomolecules. Currently designed to express proteins in the standard system Escherichium coli, the automated pipeline will in future be adapted for complex production in eukaryotic cells. This will allow the study of even larger, more complicated complexes of human origin, including many promising drug targets. The system has already attracted commercial interest.

Source: European Molecular Biology Laboratory (news : web)

Explore further: New tool identifies therapeutic proteins in a 'snap'

add to favorites email to friend print save as pdf

Related Stories

Mechanism of microRNAs deciphered

May 16, 2007

Over 30% of our genes are under the control of small molecules called microRNAs. They prevent specific genes from being turned into protein and regulate many crucial processes like cell division and development, but how they ...

Membrane complexes take flight

Jun 17, 2008

Against currently held dogma, scientists at the Universities of Cambridge and Bristol have revealed that the interactions within membrane complexes can be maintained intact in the vacuum of a mass spectrometer. Their research ...

Membrane complexes take flight

Jun 12, 2008

Against currently held dogma, scientists at the Universities of Cambridge and Bristol have revealed that the interactions within membrane complexes can be maintained intact in the vacuum of a mass spectrometer. Their research ...

Cracking a virus protection shield

Jun 16, 2006

Ebola, measles and rabies are serious threats to public health in developing countries. Despite different symptoms all of the diseases are caused by the same class of viruses that unlike most other living beings carry their ...

Getting wise to the influenza virus' tricks

May 04, 2008

Influenza is currently a grave concern for governments and health organisations around the world. The worry is the potential for highly virulent bird flu strains, such as H5N1, to develop the ability to infect humans easily. ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

Aug 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Scire
1 / 5 (1) May 07, 2009
Implications for nanotechnology?