Moving gene therapy forward with mobile DNA

May 03, 2009

Gene therapy is the introduction of genetic material into a patient's cells resulting in a cure or a therapeutic effect. In recent years, it has been shown that gene therapy is a promising technology to treat or even cure several fatal diseases for which there is no attractive alternative therapy.

Gene therapy can be used for hereditary diseases, but also for other diseases that affect heart, brain and even for cancer. Indeed, recent results suggest that can be beneficial for patients suffering from aggressive brain cancer that would otherwise be lethal.

Despite the overall progress, there is still a need to develop improved and safer approaches to deliver genes into cells. The success of gene therapy ultimately depends on these gene delivery vehicles or vectors. Most vectors have been derived from virusses that can be tailor-made to deliver therapeutic genes into the patients' cells. However, some of these viral vectors can induce side-effects, including cancer and inflammation.

Marinee Chuah, Thierry VandenDriessche, Eyayu Belay and their fellow VIB researchers at K.U. Leuven in collaboration with Zsuzsanna Iszvak and Zoltan Ivics and colleagues at the Max Delbrück Center in Berlin (Germany) have now developed a new non-viral approach that overcomes some of the limitations associated with viral vectors.

Using the principles of evolution and natural selection, that were initially conceived by Charles Darwin, they have now developped an efficient and safe gene delivery approach based on non-viral genetic elements, called transposons. Transposons are mobile DNA elements that can integrate into 'foreign' DNA via a 'cut-and-paste' mechanism. In a way they are natural vehicles. The researchers constructed the transposons in such a way that they can carry the therapeutic gene into the DNA. Doing so, they obviate the need to rely on viral vectors.

'We show for the first time that it is now possible to efficiently deliver genes into stem cells, particularly those of the immune system, using non-viral gene delivery', says Marinee Chuah. 'Many groups have tried this for many years but without success. We are glad that we could now overcome this hurdle' claims Thierry VandenDriessche. Zsuzsanna Izsvak and Zoltan Ivics concur: 'This transposon technology may greatly simplify the way gene therapy is conducted, improve its overall safety and reduce the costs'.

The VIB researchers are further testing this technology to treat specific diseases including cancer and genetic disorders, in anticipation of moving forward and treat patients suffering from these diseases.

Source: VIB

Explore further: Mysterious esophagus disease is autoimmune after all

add to favorites email to friend print save as pdf

Related Stories

'Jumping genes' could make for safer gene delivery system

Sep 26, 2007

To move a gene from point A to point B, scientists and gene therapists have two proven options: a virus, which can effectively ferry genes of interest into cells, and a plasmid, an engineered loop of DNA that can do the same ...

New research may help to design better gene therapy vectors

Oct 07, 2008

(PhysOrg.com) -- Research published by scientists from the University of Reading may offer an insight into ways of making safer and more specific gene therapy vectors. The research, published in the journal Nature Structural an ...

Polymers hold promise for safer gene delivery

Sep 07, 2007

In work that could lead to safe and effective techniques for gene therapy, MIT researchers have found a way to fine-tune the ability of biodegradable polymers to deliver genes.

Safer, more effective gene therapy

Jun 26, 2008

Athens, Ga. – The potential of gene therapy has long been hampered by the risks associated with using viruses as vectors to deliver healthy genes, but a new University of Georgia study helps bring scientists closer to a ...

Recommended for you

Mysterious esophagus disease is autoimmune after all

3 hours ago

(Medical Xpress)—Achalasia is a rare disease – it affects 1 in 100,000 people – characterized by a loss of nerve cells in the esophageal wall. While its cause remains unknown, a new study by a team of researchers at ...

Diagnostic criteria for Christianson Syndrome

Jul 21, 2014

Because the severe autism-like condition Christianson Syndrome was only first reported in 1999 and some symptoms take more than a decade to appear, families and doctors urgently need fundamental information ...

New technique maps life's effects on our DNA

Jul 20, 2014

Researchers at the BBSRC-funded Babraham Institute, in collaboration with the Wellcome Trust Sanger Institute Single Cell Genomics Centre, have developed a powerful new single-cell technique to help investigate how the environment ...

User comments : 0