Mosquito parasite may help fight dengue fever

May 01, 2009
mosquito
A female mosquito of the Culicidae family (Culiseta longiareolata). Image: Wikipedia

Dengue fever is a terrible viral disease blighting many of the world's tropical regions. Carried by mosquitoes, such as Aedes aegypti, 40% of the world's population is believed to be at risk from the infection. What is more, previous exposure to other strains of the fever does not confer protection. In fact, subsequent infections are significantly worse, and can result in fatal dengue haemorrhagic fever.

The lack of a functioning vaccine forced Scott O'Neill and Elizabeth McGraw to look for a more creative form of defence. Knowing that a parasite, Wolbachia pipientis, shortens the lifespan of host insects and could restrict dengue fever transmission by killing the insects before they can pass the infection on, O'Neill and his team successfully infected Ae. aegypti with a strain of the Wolbachia bacterium and shortened the mosquitoes' lifespan.

But before insects carrying the bacterium can be released into the environment, the O'Neill and McGraw teams have to convince international governments that mosquitoes carrying the Wolbachia parasite could successfully limit transmission of the virus. McGraw and O'Neill had to find out how the bacterium affects the mosquito's physiology and behaviour and publish their results in the on May 1 2009.

Knowing that Wolbachia slows down some insects' activity and speeds up others, the team decided to test how the parasite affects Ae. aegypti as they age and the infection takes hold. Working with uninfected and infected mosquitoes produced by Conor McMeniman, Oliver Evans and Eric Caragata used a system designed by Craig Williams to film the activities of male and female mosquitoes as they aged to find how the bacteria affected the insects' activity levels. According to McGraw, the experiments generated a huge amount of video data, so Evans teamed up with Megan Woolfit and David Green to pipe the data to a cluster of workstations to track the insects' movements and analyse their activity levels.

After a year of experimental design, data collection and analysis, it was clear that the infected mosquitoes were more active than the uninfected insects. Most surprisingly, as the mosquitoes aged and the infection took hold, it did not increase their activity levels further.

Having found that the insects became more active in response to their bacterial lodgers, Craig Franklin joined the team to help measure the insects' CO2 production to find how their metabolic rates respond to the parasite. Again, the insects' metabolic rates were higher than those of the uninfected mosquitoes.

So why are the infected insects more active than the uninfected insects? McGraw says there are three possible explanations; the insects are living fast and dying young; the insects are hungrier and consume more energy in their constant search for food; or the bacteria somehow affect the insects' tissues to change their behaviour and increase their metabolic rate. McGraw suspects that the last explanation is the most likely.

Having shown that the activity levels of Wolbachia infected mosquitoes respond to the bacterium, McGraw and O'Neill are continuing to test how the infection affects the insects' biting behaviour and whether a Wolbachia infection can become established in Ae. aegypti populations to limit their lifespans. Ultimately, McGraw and O'Neill hope to release infected into afflicted regions of the world to limit dengue fever transmission, but only once they are sure that the will do no harm to the environment.

More information: Evans, O., Caragata, E. P., McMeniman, C. J., Woolfit, M., Green, D. C., Williams, C. R., Franklin, C. E., O'Neill, S. L. and McGraw, E. A. (2009). Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis J. Exp. Biol. 212, 1436-1441. jeb.biologists.org

Source: The Company of Biologists (news : web)

Explore further: How plant cell compartments change with cell growth

add to favorites email to friend print save as pdf

Related Stories

Scientists closing the zap on dengue fever

Jan 01, 2009

(PhysOrg.com) -- A mosquito-borne virus that each year harms up to 100 million people and kills more than 20,000 is a step closer to being controlled after a breakthrough by Queensland scientists.

Taking the sting out of insect disease

Oct 31, 2008

(PhysOrg.com) -- University of Queensland researchers have made a discovery that could open up a new front in the fight against insect-transmitted diseases.

Recommended for you

How plant cell compartments change with cell growth

16 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

16 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

17 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

18 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0