Carbon nanotube device can detect colors of the rainbow

Apr 30, 2009
Sandia researcher Xinjian Zhou measures the electronic and optical properties of carbon nanotube devices in a probe station. The monitor shows the electrode layout on the device wafer; the nanotubes are positioned in the small horizontal gaps. Credit: (Photo by Randy Wong)

Researchers at Sandia National Laboratories have created the first carbon nanotube device that can detect the entire visible spectrum of light, a feat that could soon allow scientists to probe single molecule transformations, study how those molecules respond to light, observe how the molecules change shapes, and understand other fundamental interactions between molecules and nanotubes.

Carbon nanotubes are long thin cylinders composed entirely of . While their diameters are in the nanometer range (1-10), they can be very long, up to centimeters in length.

The carbon-carbon bond is very strong, making carbon nanotubes very robust and resistant to any kind of deformation. To construct a nanoscale color detector, Sandia researchers took inspiration from the human eye, and in a sense, improved on the model.

When light strikes the retina, it initiates a cascade of chemical and that ultimately trigger . In the nanoscale color detector, light strikes a chromophore and causes a conformational change in the molecule, which in turn causes a threshold shift on a transistor made from a single-walled carbon nanotube.

"In our eyes the neuron is in front of the retinal molecule, so the light has to transmit through the neuron to hit the molecule," says Sandia researcher Xinjian Zhou. "We placed the nanotube transistor behind the molecule—a more efficient design."

Zhou and his Sandia colleagues François Léonard, Andy Vance, Karen Krafcik, Tom Zifer, and Bryan Wong created the device. The team recently published a paper, "Color Detection Using Chromophore-Nanotube Hybrid Devices," in the journal Nano Letters.

The idea of carbon nanotubes being light sensitive has been around for a long time, but earlier efforts using an individual nanotube were only able to detect light in narrow wavelength ranges at laser intensities. The Sandia team found that their nanodetector was orders of magnitude more sensitive, down to about 40 W/m2—about 3 percent of the density of sunshine reaching the ground. "Because the dye is so close to the nanotube, a little change turns into a big signal on the device," says Zhou.

The research is in its second year of internal Sandia funding and is based on Léonard's collaboration with the University of Wisconsin to explain the theoretical mechanism of carbon nanotube light detection. Léonard literally wrote the book on carbon nanotubes—The Physics of Carbon Nanotubes, published September 2008.

Léonard says the project draws upon Sandia's expertise in both materials physics and materials chemistry. He and Wong laid the groundwork with their theoretical research, with Wong completing the first-principles calculations that supported the hypothesis of how the chromophores were arranged on the nanotubes and how the chromophore isomerizations affected electronic properties of the devices.

To construct the device, Zhou and Krafcik first had to create a tiny transistor made from a single carbon nanotube. They deposited carbon nanotubes on a silicon wafer and then used photolithography to define electrical patterns to make contacts.

The final piece came from Vance and Zifer, who synthesized molecules to create three types of chromophores that respond to either the red, green, or orange bands of the visible spectrum. Zhou immersed the wafer in the dye solution and waited a few minutes while the chromophores attached themselves to the nanotubes.

The team reached their goal of detecting visible light faster than they expected—they thought the entire first year of the project would be spent testing UV light. Now, they are looking to increase the efficiency by creating a device with multiple nanotubes.

"Detection is now limited to about 3 percent of sunlight, which isn't bad compared with a commercially available digital camera," says Zhou. "I hope to add some antennas to increase light absorption."

A device made with multiple carbon nanotubes would be easier to construct and the resulting larger area would be more sensitive to light. A larger size is also more practical for applications.

Now, they are setting their sites on detecting infrared light. "We think this principle can be applied to infrared light and there is a lot of interest in infrared detection," says Vance. "So we're in the process of looking for dyes that work in infrared."

This research eventually could be used for a number of exciting applications, such as an optical detector with nanometer scale resolution, ultra-tiny digital cameras, solar cells with more light absorption capability, or even genome sequencing. The near-term purpose, however, is basic science.

"A large part of why we are doing this is not to invent a photo detector, but to understand the processes involved in controlling devices," says Léonard.

The next step in the project is to create a nanometer-scale photovoltaic device. Such a device on a larger scale could be used as an unpowered photo detector or for solar energy. "Instead of monitoring current changes, we'd actually generate current," says Vance. "We have an idea of how to do it, but it will be a more challenging fabrication process."

Source: Sandia National Laboratories (news : web)

Explore further: Researchers uncover properties in nanocomposite oxide ceramics for reactor fuel

add to favorites email to friend print save as pdf

Related Stories

Sandia researcher examines the physics of carbon nanotubes

May 01, 2008

Carbon nanotubes, described as the reigning celebrity of the advanced materials world, are all the rage. Recently researchers at Rice University and Rensselaer Polytechnic Institute used them to make the “blackest ...

Tweezers Trap Nanotubes by Color

Sep 26, 2008

Singled-walled carbon nanotubes are graphene sheets wrapped into tubes, and are typically made up of various sizes and with different amounts of twist (also known as chiralities). Each type of nanotube has its own electronic ...

Laser applications heat up for carbon nanotubes

Jan 26, 2005

Carbon nanotubes -- a hot nanotechnology with many potential uses -- may find one of its quickest applications in the next generation of standards for optical power measurements, which are essential for laser sys ...

How to Shrink a Carbon Nanotube

Nov 30, 2006

A research group has devised a way to control the diameter of a carbon nanotube – down to essentially zero nanometers. This useful new ability, designed by scientists from the University of California at ...

Excitons play peek-a-boo on carbon nanotubes

Jun 07, 2007

In the quantum world, photons and electrons dance, bump and carry out transactions that govern everything we see in the world around us. In this week's issue of Science, French and U.S. scientists describe a new technique ...

Measuring conductance of carbon nanotubes, one by one

Dec 15, 2008

(PhysOrg.com) -- A single batch of carbon nanotubes -- molecular carbon cylinders that may one day revolutionize electronics engineering -- often includes more than 100 types of tubes, each with different ...

Recommended for you

Scientists grow a new challenger to graphene

15 hours ago

A team of researchers from the University of Southampton's Optoelectronics Research Centre (ORC) has developed a new way to fabricate a potential challenger to graphene.

Nanotubes help healing hearts keep the beat

15 hours ago

(Phys.org) —Carbon nanotubes serve as bridges that allow electrical signals to pass unhindered through new pediatric heart-defect patches invented at Rice University and Texas Children's Hospital.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

denijane
not rated yet May 01, 2009
I find something creepy in the idea of a tube with diameter few nanometres and centimetres long. It's like ultra-strong spider web. Duh...