Stanford scientists turn adult skin cells into muscle and vice versa

Apr 30, 2009

In a study featured on the cover of the May issue of The FASEB Journal, researchers describe how they are able to reprogram human adult skin cells into other cell types in order to decipher the elusive mechanisms underlying reprogramming. To demonstrate their point, they transformed human skin cells into mouse muscle cells and vice versa. This research shows that by understanding the regulation of cell specialization it may be possible to convert one cell type into another, eventually bypassing stem cells.

"Regenerative medicine provides hope of novel and powerful treatments for many diseases, but depends on the availability of cells with specific characteristics to replace those that are lost or dysfunctional," said Helen M. Blau, Ph.D., the senior scientist involved in the study, Associate Editor of The FASEB Journal, Member of the Stem Cell Institute, and Director of the Baxter Laboratory in Genetic Pharmacology at Stanford. "We show here that mature cells can be directly reprogrammed to generate those necessary cells, providing another way besides embryonic stem cells or induced pluripotent stem cells of overcoming this important bottleneck to restoring tissue function."

The Stanford scientists sought to transform one specialized adult cell from one species into a different specialized adult cell of another species. To do this, they first used a chemical treatment to fuse skin and muscle cells together, producing cells that had nuclei from cells and mouse . By being encapsulated within the same cell wall, the human and mouse muscle nuclei could now "talk" to one another via chemical signals. Then, the scientists looked at the genes expressed from the human skin nuclei and mouse muscle nuclei. (This was possible because one cell type was human and the other was mouse, so the genes could be distinguished based on species differences.) After several experiments, they were able to induce the human skin nuclei to produce mouse muscle genes and induce the muscle nuclei to produce human skin genes—effectively transforming the cell from one type to the other.

"Reprogramming mature cells will likely complement the use of in regenerating tissues," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "By elucidating the regulators of reprogramming, as the Stanford group is doing, it may be possible to generate replacement cells in cases where are not present or not appropriate."

Source: Federation of American Societies for Experimental Biology (news : web)

Explore further: Life's extremists may be an untapped source of antibacterial drugs

add to favorites email to friend print save as pdf

Related Stories

Study: Skin cells turned into stem cells

Aug 22, 2005

The controversy over embryonic stem cell research may become moot with a procedure that turns skin cells into what appear to be embryonic stem cells.

New technique produces genetically identical stem cells

Jul 01, 2008

Adult cells of mice created from genetically reprogrammed cells—so-called induced pluripotent stem (IPS) stem cells—can be triggered via drug to enter an embryonic-stem-cell-like state, without the need for further genetic ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (1) Apr 30, 2009
If all cells are interchangable and totipotent it might be possible to regenerate a finger or a hand if it was cut off.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.