Dislocation creates 'whirlpool' that pulls surface atoms into crystal

Jun 08, 2004

6/7/04 CHAMPAIGN, Ill. — Developing novel ways to control the motion of atoms on surfaces is essential for the future of nanotechnology. Now, researchers at the University of Illinois at Urbana-Champaign have found a phenomenon of dislocation-driven nucleation and growth that creates holes that spiral into a surface and pull atoms into crystalline solids.

The newly discovered mechanism – identified as a series of spiral steps around dislocations terminating at the surface of titanium nitride, a technologically important material used in microelectronics and hard coatings – could potentially be put to use in controlling surface morphology and in preparing nanoscale structures on surfaces.

“The spiral step dynamics strongly suggests that the cores of surface-terminated dislocations behave like ‘whirlpools’ sucking surface atoms into the crystal structure,” said Suneel Kodambaka, a postdoctoral research associate and lead author of a paper that announced the team’s findings in the May 6 issue of the journal Nature.

Dislocations are imperfections in a crystal structure where there is a missing or an extra half plane of atoms in the lattice. Dislocations can strongly influence nanostructural and interfacial stability, mechanical properties and chemical reactions.

“We found that the presence of a dislocation could reverse the behavior and evolution of the nearby surface substructure,” said Ivan Petrov, a research professor and director of the Center for Microanalysis of Materials at the Frederick Seitz Materials Research Laboratory on the U. of I. campus.

To study the dynamics of dislocation motion and morphological evolution in single crystals at high temperature (1,300 to 1,400 degrees Celsius), the researchers used low-energy electron microscopy – a technique that can visualize the surface at the atomic level.

“We saw steps form at the dislocation site and expand into spiral structures,” Kodambaka said. “This type of spiral growth had been seen previously under applied stress, and when depositing or evaporating material; but never during annealing, when the crystal is neither gaining nor losing material.”

Resembling steps on a spiral staircase, each step was one layer of atoms thick and rotated around the dislocation core. The spiral slowly spun while growing inward, like a bathtub drain sucking water.

“The dislocation provides a path for atoms to move from the surface to inside the crystal,” Petrov said. “The spiral structure is a manifestation of the moving material. It is a vortex that consumes surface atoms and drives the nearby surface kinetics.”

The researchers’ results “provide fundamental insights into mechanisms that control both the stability of nanostructures and the formation of nanoscale patterns on surfaces,” Kodambaka said. “We think this spiral growth process is quite general and will be observed in many other materials.”

In addition to Kodambaka and Petrov, the research team included materials science and engineering professor Joseph Greene, electron microscopist Waclaw Swiech and postdoctoral research associates Sanjay Khare and Kenji Ohmori. The U.S. Department of Energy funded the work.

The original press release can be found here.

Explore further: Scanning tunnelling microscopy: Computer simulations sharpen insights into molecules

add to favorites email to friend print save as pdf

Related Stories

After a data breach, it's consumers left holding the bag

10 minutes ago

Shoppers have launched into the holiday buying season and retailers are looking forward to year-end sales that make up almost 20% of their annual receipts. But as you check out at a store or click "purchase" on your online shopping cart ...

Can we create an energy efficient Internet?

20 minutes ago

With the number of Internet connected devices rapidly increasing, researchers from Melbourne are starting a new research program to reduce energy consumption of such devices.

Recommended for you

Nanomaterials to preserve ancient works of art

21 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

21 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

Protons fuel graphene prospects

Nov 26, 2014

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.