Hydrogen protects nuclear fuel in final storage

Apr 23, 2009

By midsummer it will be announced where Sweden's spent nuclear fuel will be permanently stored. Ahead of the decision a debate is underway regarding how safe the method for final storage is, primarily in terms of the three barriers that are intended to keep radioactive material from leaking into the surrounding groundwater.

But according to the new doctoral dissertation, uranium would not be dissolved by the water even if all three barriers were compromised.

"This is a result of what we call the effect," says Patrik Fors, who will defend his thesis in nuclear chemistry at Chalmers on Friday. "The hydrogen effect was discovered in 2000. It's a powerful effect that was not factored in when plans for permanent storage began to be forged, and now I have shown that it's even more powerful than was previously thought."

The hydrogen effect is predicated on the existence of large amounts of iron in connection with the nuclear fuel. In the Swedish method for final storage, the first barrier consists of a capsule that is reinforced with iron. The second barrier is a buffer of bentonite clay, and the third is 500 meters of granite bedrock. Some other countries have chosen
to make the first barrier entirely of iron.

It is known that microorganisms and fissure minerals in the rock will consume all the oxygen in the groundwater. If all three barriers were to be damaged, the iron in the capsule would therefore be anaerobically corroded by the water, producing large amounts of hydrogen. In final storage at a depth of 500 meters, a pressure of at least 5 megapascals of hydrogen would be created.

Patrik Fors has now created these conditions in the laboratory and examined three different types of spent nuclear fuel. All of the trials showed that the hydrogen protects the fuel from being dissolved in the water, even though the highly radioactive fuels create a corrosive environment in the water as a result of their . The reason for the protective effect is that the hydrogen prevents the uranium from oxidizing and converting to liquid form.

Furthermore, the hydrogen makes the oxidized uranium that already exists as a liquid in the water shift to a solid state. The outcome was that the amount of found dissolved in the , after experiments lasting several years, was lower than the natural levels in Swedish groundwater.

"The hydrogen effect will prevent the dissolution of nuclear fuel until the fuel's radioactivity is so low that it need no longer be considered a hazard," says Patrik Fors. The amount of iron in the capsules is so great that it would produce sufficient hydrogen to protect the fuel for tens of
thousands of years.

Patrik Fors carried out his experiments at the Institute for Transuranium Elements in Karlsruhe, Germany, in a joint project with Chalmers. The institute is operated by the European Commission. The research was also funded by SKB, the Swedish and Waste Management Company.

Provided by The Swedish Research Council

Explore further: Discarded cigarette ashes could go to good use—removing arsenic from water

add to favorites email to friend print save as pdf

Related Stories

A promising step towards more effective hydrogen storage

Jun 16, 2008

An international research team led by Swedish Professor Rajeev Ahuja, Uppsala University, has demonstrated an atomistic mechanism of hydrogen release in magnesium nanoparticles – a potential hydrogen storage material. The ...

Researchers meet major hydrogen milestone

Sep 18, 2008

A team of scientists from the U.S. Department of Energy's Idaho National Laboratory earlier this month reached a major milestone with the successful production of hydrogen through High-Temperature Electrolysis (HTE).

Adsorbent materials for hydrogen storage

Jun 27, 2005

A research team from the Public University of Navarra has started a study of the design and development of absorbent materials that enable the storage of hydrogen, a clean fuel that can be used as an alternative to those ...

Is hydrogen a viable fuel alternative?

Oct 12, 2005

Hydrogen is the most abundant element in the universe, and a research investigator at the University of Missouri-Rolla has received a $300,000 grant from the U.S. Department of Energy to study how it might one day replace ...

Recommended for you

Towards controlled dislocations

18 hours ago

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0