Exercise protects against damage causing leakage in the blood-brain barrier

Apr 21, 2009

Regular exercise can prevent the disruption of the blood brain barrier that normally occurs with a dose of methamphetamine comparable to that used by heavy meth users.

A University of Kentucky study is the first to look at the protective effects of exercise on the vascular effects of , effects that have been found clinically to contribute to serious, lasting, and sometimes fatal cardiovascular and . Results of the study, conducted in young male mice, were reported April 22 at the Experimental Biology 2009 meeting in New Orleans. The presentation was part of the scientific program of The American Physiological Society.

Principal investigator Dr. Michal Toborek says the level of the protective effects of exercise on the integrity of the blood brain barrier after the human equivalent of one gram of methamphetamine was surprising even to the research team.

The results provide new understanding of the mechanisms through which the brain reacts to methamphetamine, particularly those related to oxidative stress. Results also suggest why exercise might help delay the onset of such as Alzheimer's and Parkinson's in which leakiness of the blood brain barrier is a characteristic.

The researchers placed 25 young male mice - aged three months, equivalent to the 20s in humans -- in cages where they had access to exercise wheels. For five weeks, the animals took advantage of the wheels to run continually. Another 25 young mice were housed in similar cages but without access to wheels.

At the end of this "endurance exercise training" period, all mice were injected with 10 mg. of methamphetamine over a 24-hour period. All the mice displayed some of the same effects of meth as seen in humans: they appeared agitated and increased their physical activity, and their body temperature rose. But in terms of what was happening in the capillaries of the brain, there was a marked difference between the mice who had been exercising extensively for the previous five weeks and those who had been sedentary.

In the sedentary group of mice, the small capillaries in the brain experienced increased oxidative stress, causing the blood brain barrier to become more permeable. Toxins and inflammatory cells previously prevented from crossing the blood brain barrier then had access to the brain. The exercise group showed no such changes.

Changes in the blood brain barrier, especially the role of oxidative reactions, have been little studied in the past, says Dr. Toborek; the University of Kentucky study is the first to observe that meth administration produced an upregulation of NADPH oxidase, a major enzyme that causes oxidative stress.

This is a significant finding, says Dr. Toborek, because it delineates a mechanism for how meth causes oxidative stress. It also was significant that the exercise mice were markedly protected from such upregulation and consequently from the oxidative stress that weakened the capillaries in the brains of the non-exercise mice.

Exercise by no means protects against all the harmful effects of meth use, says Dr. Toborek, and the team now plans to study the effects and mechanisms involved in chronic meth abuse. However, he says, this study adds to the growing amount of data showing the positive and protective health effects of consistent exercise.

Source: Federation of American Societies for Experimental Biology (news : web)

Explore further: One route to malaria drug resistance found

add to favorites email to friend print save as pdf

Related Stories

Newly-identified exercise gene could help with depression

Dec 02, 2007

Boosting an exercise-related gene in the brain works as a powerful anti-depressant in mice—a finding that could lead to a new anti-depressant drug target, according to a Yale School of Medicine report in Nature Medicine.

Prenatal meth exposure linked to abnormal brain development

Apr 15, 2009

A first of its kind study examining the effects of methamphetamine use during pregnancy has found the drug appears to cause abnormal brain development in children. The research is published in the April 15, 2009, online issue ...

Exercise may lead to faster prostate tumor growth

Apr 14, 2008

Prostate tumors grew more quickly in mice who exercised than in those who did not, leading to speculation that exercise may increase blood flow to tumors, according to a new study by researchers in the Duke Comprehensive ...

Recommended for you

Antioxidant biomaterial promotes healing

50 minutes ago

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern University's Guillermo Ameer, most of the time, that response can be negative ...

Immune response may cause harm in brain injuries, disorders

2 hours ago

Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, ...

One route to malaria drug resistance found

6 hours ago

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious ...

Protein therapy successful in treating injured lung cells

7 hours ago

Cardiovascular researchers at The Ohio State University Wexner Medical Center have successfully used a protein known as MG53 to treat acute and chronic lung cell injury. Additionally, application of this protein proved to ...

User comments : 0