Ultrasound imaging now possible with a smartphone

Apr 21, 2009
William D. Richard (left) takes an ultrasound probe of colleague David Zar's carotid artery with a low-power imaging device he designed. Image: David Kilper/WUSTL Photo

Computer engineers at Washington University in St. Louis are bringing the minimalist approach to medical care and computing by coupling USB-based ultrasound probe technology with a smartphone, enabling a compact, mobile computational platform and a medical imaging device that fits in the palm of a hand.

William D. Richard, Ph.D., Washington University Associate Professor of Computer Science and Engineering, and David Zar, Washington University Research Associate in Computer Science and Engineering, have made commercial USB ultrasound probes compatible with Microsoft Windows Mobile-based smartphones, thanks to a $100,000 grant Microsoft awarded the two in 2008.

In order to make commercial USB ultrasound probes work with smartphones, the researchers had to optimize every aspect of probe design and operation, from and data transfer rate to image formation algorithms. As a result, it is now possible to build smartphone-compatible USB ultrasound probes for imaging the kidney, liver, bladder, and eyes, endocavity probes for prostate and uterine screenings and biopsies, and vascular probes for imaging veins and arteries for starting IVs and central lines.

Both medicine and global computer use will never be the same.

"You can carry around a probe and cell phone and image on the fly now," said Richard. "Imagine having these smartphones in ambulances and emergency rooms." "On a larger scale, this kind of cell phone is a complete computer that runs Windows. It could become the essential computer of the Developing World, where trained medical personnel are scarce, but most of the population, as much as 90 percent, have access to a tower." "Twenty-first century medicine is defined by medical imaging," said Zar. "Yet 70 percent of the world's population has no access to medical imaging. It's hard to take an MRI or to a rural community without power."

Shrinking the electronics over 25 years

Zar said the vision of the new system is to train people in remote areas of the developing world on the basics of gathering data with the phones and sending it to a centralized unit many miles, or half a world, away where specialists can analyze the image and make a diagnosis. Zar wrote the phone software and firmware for the probes; Richard came up with the low-power probe electronics design. He began working on ultrasound system designs 25 years ago, and in that span he has shrunk the electronics from cabinet-sized to a tiny circuit board one inch by three inches. A typical, portable ultrasound device may cost as much as $30,000. Some of these USB-based probes sell for less than $2,000 with the goal of a price tag as low as $500.

Another promising application is for caregivers of patients with Duchene's Muscular Dystrophy. A degenerative disease that often strikes young boys and robs them of their lives by their late 20s, DMD is a degenerative disease for which there is no cure. The leading treatment to slow its progression is a daily dose of steroids. Patients often experience some side effects to steroids, which are dose related. These side effects include behavioral problems and weight gain. Researchers now know that physical changes in muscle tissue can indicate the efficacy of the steroids. Measuring these changes in muscle can be accomplished with ultrasound and may allow researchers to optimize steroid dosing to maximize efficacy while minimizing side effects. "The idea is that caregivers, who otherwise have to transport a young person often wheelchair bound to a hospital or clinic on a regular basis for examination, can be trained to do ultrasound to track muscle condition," Zar said. "This could lower the dosage to the least effective amount to further increase quality of life of the patient and the caregiver and hopefully extend life. We're really excited about this application. The caregiver would only have to do a one-minute scan, transfer the data captured to the clinic, and the results would come back to the caregiver. A group at the Washington University Medical School studying Duchene's Muscular Dystrophy is very interested in our devices and hope they can incorporate them into their research plans."

Field trials in the Third World

Richard and Zar have discussed a potential collaboration with researchers at the Massachusetts Institute of Technology about integrating their probe-smartphone concept into a suite of field trials for medical applications in developing countries. "We're at the point of wanting to leverage what we've done with this technology and find as many applications as possible,' Richard said.

One such application could find its way to the military. Medics could quickly diagnose wounded soldiers with the small, portable probe and phone to detect quickly the site of shrapnel wounds in order to make the decision of transporting the soldier or treating him elsewhere on the field.

Richard and Zar demonstrated a fully functional smartphone-compatible USB ultrasound probe at Microsoft Research Techfest 2009 in February, and Zar presented the technology at the 2009 World Health Care Congress held in Washington, D.C., from April 14-16.

Source: Washington University in St. Louis (news : web)

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

Duke engineers develop new 3-D cardiac imaging probe

May 26, 2005

Biomedical engineers at Duke University's Pratt School of Engineering have created a new three-dimensional ultrasound cardiac imaging probe. Inserted inside the esophagus, the probe creates a picture of the whole heart in ...

3-D ultrasound scanner provides in-depth view of the brain

Jun 20, 2007

Biomedical engineers at Duke's Pratt School of Engineering have adapted a three-dimensional ultrasound scanner that might guide minimally invasive brain surgeries and provide better detection of a brain tumor’s location.

Computer model improves ultrasound image

Nov 04, 2008

Doctors use diagnostic sonography or ultrasound to visualise organs and other internal structures of the human body. Dutch researcher Koos Huijssen has developed a computer model that can predict the sound transmission of ...

Nokia 6680 3G imaging smartphone starts shipping

Mar 21, 2005

Nokia today announced that it has started deliveries of the Nokia 6680, introduced just one month ago at the 3GSM World Congress in Cannes, France. Optimized for visual sharing, the Nokia 6680 imaging smartphone ...

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Tylernol
not rated yet Apr 21, 2009
I'm sure there could be many non-medical applications for this technology. I would imagine there could be many industrial uses.
Ausjin
not rated yet Apr 21, 2009
There are. Welding for example. Ultrasound tests are a common requirement for certification. It could also be useful for finding sub surface fractures in almost any material. this should be especially useful for construction and aircraft inspection. I am not sure this example will work in denser medium, but it seems a simple software change, and perhaps a differently calibrated sensor would be all it takes to adapt this.
tealeebee
not rated yet Apr 21, 2009
This is a significant breakthrough toward making universal telemedicine a reality. Monitoring will lead to diagnoses, and these to treatment. Home or remote drug delivery systems, not to mention use of ultrasound to combat cancer and other diseases, are an added benefit of this technology as it develops in future years. Congratulations to the St. Louis innovators, all of them! Let's hope that your work spreads quickly throughout the academic research and medical world.
Karrasko
not rated yet Apr 22, 2009
Soon you will be able to have a diagnostic in the sofa of your home. I don't known really if this will be the right path to follow. http://twitter.com/ESS_BILBAO

More news stories

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

A homemade solar lamp for developing countries

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...