Huntington disease begins to take hold early on

Apr 16, 2009

A global analysis of brain proteins over a 10-week period in a mouse model of Huntington Disease has revealed some new insights into this complex neurodegenerative disorder. For example, profound changes (comparable to those seen in late-stage HD) actually occur well before any disease symptoms show up, and most of the changes are confined to a specific stage during disease progression. These findings should aid in determining the optimal times for therapies that aim to treat or cure this disease.

While HD (which is brought on by mutations in the gene for Huntingtin has been studied extensively at the cellular level, much of the work has been focused on late-stage disease when the various symptoms (declines in both motor coordination and cognitive ability) have already manifested. But since HD is an inherited condition, changes likely occur much earlier, and to get a better sense of disease progression, Claus Zabel and colleagues used proteomics to analyze the brains of HD mice at 2, 4, 6, 8, and 12 weeks of age, a period that covers absence of any disease-related phenotypes to the pronounced disease state.

Unexpectedly, they found a large number of protein alterations (almost 6% of the total) as early as 2 weeks of age; a significant portion of these changes contributed to an increase in , which corresponds to the weight loss that occurs early during HD progression. As the disease progressed over 10 weeks, though, the affected proteins kept changing. In fact, about 70% of observed changes were confined to one of the five time points examined and no proteins were similarly altered in all 5 stages.

Therefore this study, appearing in the April issue of Molecular and Cellular Proteomics, argues against an HD model in which there is a gradual increase in the number and magnitude of protein changes and instead leans toward a more dynamic pathology. Zabel and colleagues suggest that these early changes affect late stage disease by irreversibly changing the biochemical activity in the mouse brain.

More information: www.mcponline.org/cgi/content/full/8/4/720

Source: American Society for Biochemistry and Molecular Biology

Explore further: Leprosy: Myanmar struggles with ancient scourge

add to favorites email to friend print save as pdf

Related Stories

Researchers discover zip codes for protein

Jan 29, 2007

McMaster scientists are very close to defining small molecule drugs that should be able to redirect the huntingtin protein from accumulating in the wrong place within brain cells, which could potentially translate to a therapy ...

Recommended for you

Leprosy: Myanmar struggles with ancient scourge

3 hours ago

High in the hills of Myanmar's war-torn borderlands, a clutch of new leprosy cases among communities virtually cut off from medical help is a sign that the country's battle with the ancient disease is far from over.

New analysis questions use of acute hemodialysis treatment

18 hours ago

A common approach to treating kidney failure by removing waste products from the blood did not improve survival chances for people who suddenly developed the condition, in an analysis led by experts at the University of Pittsburgh ...

WHO: West Africa Ebola death toll rises to 1,350 (Update)

18 hours ago

Riot police and soldiers acting on their president's orders used scrap wood and barbed wire to seal off 50,000 people inside their Liberian slum Wednesday, trying to contain the Ebola outbreak that has killed ...

User comments : 0