Signals from stroking have direct route to brain

Apr 14, 2009

Nerve signals that tell the brain that we are being slowly stroked on the skin have their own specialised nerve fibres in the skin. This is shown by a new study from the Sahlgrenska Academy, University of Gothenburg, Sweden. The discovery may explain why touching the skin can relieve pain.

The specialised nerve fibres in the are called CT nerves (C-tactile) and they travel directly to the areas in the that are important in the emergence of feelings.

"Basically the signals that tell the brain that we are being stroked on the skin have their own direct route to the brain, and are not blocked even if the brain is receiving pain impulses from the same area. In fact it's more the opposite, that the stroking impulses are able to deaden the pain impulses," says Line Löken, postgraduate student in neurophysiology at the Sahlgrenska Academy.

The results are being published in the distinguished scientific journal, . The research group examined a group of healthy subjects using a technique called microneurography.

"By inserting a thin into a nerve in the forearm we can listen in on the nerve and pick up signals from one of the thousands of nerve fibres that make up a nerve," explains Associate Professor Hľkan Olausson, who is leading the research group behind the discovery, together with Johan Wessberg.

Each individual nerve fibre is responsible for touch signals from roughly a square centimetre of skin. The research team used a specially-designed robot, which brushed over the exact area of skin for which a particular nerve fibre is responsible. The subjects were also asked to rate how pleasant or unpleasant they found the brushing.

"As the nerve signals that were sent in the CT nerves became more frequent, the subjects reported the experience as being increasingly pleasant. Of the skin nerves that we studied, it was only the CT nerves that had this strong link between the frequency of the signals and how pleasant it felt," says researcher Johan Wessberg.

Source: University of Gothenburg (news : web)

Explore further: Cannabis-based medicine to be tested as child epilepsy therapy

add to favorites email to friend print save as pdf

Related Stories

Brain's white matter -- More 'talkative' than once thought

May 07, 2007

Johns Hopkins scientists have discovered to their surprise that nerves in the mammalian brain’s white matter do more than just ferry information between different brain regions, but in fact process information the way gray ...

Scientists produce neurons from human skin

Feb 22, 2007

Scientists from Université Laval’s Faculty of Medicine have succeeded in producing neurons in vitro using stem cells extracted from adult human skin. This is the first time such an advanced state of nerve cell differentiation ...

Adult brain cells rediscover their inner child

May 23, 2007

You may not be able to relive your youth, but part of your brain can. Johns Hopkins researchers have found that newly made nerves in an adult brain's learning center experience a one-month period when they are just as active ...

Relief from itch seen in nerves; may aid treatment

Apr 06, 2009

(AP) -- Scratch an itch and you get ... aaaaaah. Now scientists have watched spinal nerves transmit that relief signal to the brain in monkeys, a possible step toward finding new treatments for persistent itching in people.

Recommended for you

'Microlesions' in epilepsy discovered by novel technique

Dec 16, 2014

Using an innovative technique combining genetic analysis and mathematical modeling with some basic sleuthing, researchers have identified previously undescribed microlesions in brain tissue from epileptic ...

Thumbs-up for mind-controlled robotic arm (w/ Video)

Dec 16, 2014

A paralysed woman who controlled a robotic arm using just her thoughts has taken another step towards restoring her natural movements by controlling the arm with a range of complex hand movements.

The sense of smell uses fast dynamics to encode odors

Dec 16, 2014

Neuroscientists from the John B. Pierce Laboratory and Yale School of Medicine have discovered that mice can detect minute differences in the temporal dynamics of the olfactory system, according to research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.