When cancer cells can't let go

Apr 13, 2009
The invadopodia (glowing dots) speckling a cell lacking FAK (left) are rare on a control cell (right). Credit: Chan, K.T., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200809110.

Like a climber scaling a rock face, a migrating cancer cell has to keep a tight grip on the surface but also let go at the right moment to move ahead. Chan et al. reveal that the focal adhesion kinase (FAK) coordinates these processes to permit forward movement. The study will be published online April 13 and will appear in the April 20 print issue of the Journal of Cell Biology.

Crawling send out extensions called invadopodia. By releasing enzymes that dissolve the extracellular matrix (ECM), invadopodia clear a path for the cell to wriggle through. As they move, cancer cells get traction by temporarily attaching to the ECM through focal adhesions. FAK spurs focal adhesions to disengage, and it is more abundant in metastatic tumors. Whether FAK also regulates invadopodia was unknown.

When Chan et al. removed FAK, cells were much less invasive. But to the team's surprise, the FAK-lacking cells sprouted extra invadopodia. The cells also sported large focal adhesions that were particularly sticky. The protein Src serves as FAK's helper. FAK and Src work together to phosphorylate tyrosines in proteins such as paxillin, which then disassemble the focal adhesion. But the team found that in cells missing FAK, the phosphorylated proteins accumulated in invadopodia. Src's localization reflects this difference. In control cells, Src accumulated in focal adhesions. In FAK's absence, Src headed to the invadopodia.

The work suggests that FAK controls movement by balancing the number of invadopodia that create a path for migration and the number of focal adhesions that hold the cell back. The next question, the researchers say, is how FAK and Src integrate these events to promote invasion.

More information: Chan, K.T., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200809110. www.jcb.org

Source: Rockefeller University (news : web)

Explore further: Britain to map 100,000 DNA code sequences

add to favorites email to friend print save as pdf

Related Stories

Dense tissue promotes aggressive cancers

Aug 22, 2008

New research may explain why breast cancer tends to be more aggressive in women with denser breast tissue. Breast cancer cells grown in dense, rigid surroundings step up their invasive activities, Vanderbilt-Ingram Cancer ...

Fibroblasts invade at a snail's pace

Feb 02, 2009

A transcription factor known to drive the formation of fibroblasts during development also promotes their ability to invade and remodel surrounding tissues, report Rowe et al. in the February 9, 2009 issue ...

Turn back, wayward axon

Mar 09, 2009

To a growing axon, the protein RGMa is a "Wrong Way" sign, alerting it to head in another direction. As Hata et al. demonstrate in the March 9, 2009 issue of the Journal of Cell Biology, translating that s ...

Molecular force field helps cancer cells defend against attack

Feb 01, 2006

Much as the famed starship Enterprise would deploy a deflector shield to evade enemy attack, tumor cells are capable of switching on a molecular force field of their own to fend off treatments aimed at killing them. Now University ...

Recommended for you

Pepper and halt: Spicy chemical may inhibit gut tumors

5 hours ago

Researchers at the University of California, San Diego School of Medicine report that dietary capsaicin – the active ingredient in chili peppers – produces chronic activation of a receptor on cells lining ...

Expressive writing may help breast cancer survivors

7 hours ago

Writing down fears, emotions and the benefits of a cancer diagnosis may improve health outcomes for Asian-American breast cancer survivors, according to a study conducted by a researcher at the University of Houston (UH).

Taking the guesswork out of cancer therapy

12 hours ago

Researchers and doctors at the Institute of Bioengineering and Nanotechnology (IBN), Singapore General Hospital (SGH) and National Cancer Centre Singapore (NCCS) have co-developed the first molecular test ...

Brain tumour cells found circulating in blood

13 hours ago

(Medical Xpress)—German scientists have discovered rogue brain tumour cells in patient blood samples, challenging the idea that this type of cancer doesn't generally spread beyond the brain.

International charge on new radiation treatment for cancer

14 hours ago

(Medical Xpress)—Imagine a targeted radiation therapy for cancer that could pinpoint and blast away tumors more effectively than traditional methods, with fewer side effects and less damage to surrounding tissues and organs.

User comments : 0