New insight into an old reaction: Adenylylation regulates cell signaling

Apr 09, 2009

A new study reveals the importance of adenylylation in the regulation of cell signaling from bacteria to higher organisms. The research, published by Cell Press in the April 10th issue of the journal Molecular Cell, provides new insight into bacterial pathogenesis and opens intriguing avenues for exploring post-translational modifications in eukaryotic cells.

Immunoglobulin binding protein A (IbpA) is a large fibrillar surface antigen that is produced by the respiratory pathogen Histophilus somni and has been implicated in virulence and host toxicity. One section of IbpA is similar to YopT, a known cytotoxic effector, while a separate domain resembles Bordetella pertussis filamentous hemagglutinin, which mediates attachment to host cells.

A research team led by Dr. Jack E. Dixon from the University of California at San Diego and the Howard Hughes Medical Institute hypothesized that IbpA's filamentous hemagglutinin-like domain likely mediates attachment to host cells, while the YopT-like domain could serve as a cytotoxic effector. Unexpectedly, a systematic examination of IbpA's function revealed that the filamentation induced by c-AMP (Fic) domain, and not the YopT-homologous region, represented a virulence determinant in IbpA.

"Although Fic domains are found in proteins from bacteria to humans, their activity has remained unknown until recently, when Yarbrough et al. (Science, 2009, v. 323, p. 269) reported a Fic domain containing protein that catalyzed an adenosine monophosphate (AMP) modification on threonine residues of Rho GTPases," explains Dr. Dixon. Rho GTPases regulate multiple key signaling pathways in mammalian cells.

The researchers went on to show that the Fic domain of IbpA catalyzed a unique, reversible adenylylation event that used ATP to add an AMP to a specific, conserved tyrosine residue in Rho GTPases, thereby inactivating them and inducing cytotoxicity.

Further, the only known with a Fic motif, Huntingtin yeast-interacting protein E (HYPE), was also capable of adding AMP to RhoA, Rac, and Cdc42. Further studies are needed to better understand the significance of the interaction between HYPE, which is ubiquitously expressed in mammalian cells, and Rho GTPases. It also remains to be seen if HYPE might have targets for adenylylation beyond Rho GTPases.

Taken together, these results support an evolutionarily conserved enzymatic activity for the Fic domains of H. somni and human HYPE. "These findings identify a new class of enzymes that mediate bacterial pathogenesis and suggest that addition of AMP may be an underappreciated post-translational modification that can regulate key signaling events in higher organisms," concludes Dr. Dixon.

Source: Cell Press (news : web)

Explore further: Genomes of malaria-carrying mosquitoes sequenced

add to favorites email to friend print save as pdf

Related Stories

Chemists get grip on slippery lipids

Aug 30, 2007

The ability of the body's cells to correctly receive and convey signals is crucial to good health. Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

20 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.