Researcher identifies protein that concentrates carbon dioxide in algae

Apr 08, 2009

(PhysOrg.com) -- Increasing levels of carbon dioxide in the atmosphere are a concern to many environmentalists who research global warming.

The lack of atmospheric carbon dioxide (CO2) concentration, however, actually limits the growth of and their aquatic relatives, microalgae.

For plants and microalgae, CO2 is vital to growth. It fuels their photosynthesis process that, along with sunlight, manufactures sugars required for growth.

CO2 is present in such a limiting concentration that microalgae and some plants have evolved mechanisms to capture and concentrate CO2 in their cells to improve photosynthetic efficiency and increase growth.

An Iowa State University researcher has now identified one of the key proteins in the microalgae responsible for concentrating and moving that CO2 into cells.

"This is a real breakthrough," said Martin Spalding, professor and chair of the department of genetics, development and . "No one had previously identified any of the proteins that are involved in transporting CO2 in microalgae."

The main protein that Spalding and his team have identified that is responsible for transporting CO2 is called HLA3.

The research by Spalding; Deqiang Duanmu, a graduate student in Spalding's department; and Amy Miller, Kempton Horken and Donald Weeks, all from the University of Nebraska, Lincoln; is published in the current issue of the journal of the United States of America.

Now that the HLA3 protein has been identified, Spalding believes there are several possibilities to use the gene that encodes this protein.

The recent explosion of interest in using microalgae for production of biofuels raises the possibility of increasing photosynthesis and productivity in microalgae by increasing expression of HLA3 or other components of the CO2 concentrating mechanism, according to Spalding.

Since all plants need CO2 to thrive, introducing the HLA3 gene into plants that do not have the ability to concentrate CO2, could help those plants grow more rapidly.

Spalding says several plants would be candidates for the HLA3 protein.

"One of the things we've been working on is the prospect that we may be able to take components of the CO2 concentrating mechanism for microalgae, such as this HLA3, and put it into something like rice and improve photosynthesis for rice," said Spalding.

Rice and other commodity crops such as wheat and soybeans do not have any CO2 concentrating mechanism.

Provided by Iowa State University of Science and Technology

Explore further: Life's extremists may be an untapped source of antibacterial drugs

add to favorites email to friend print save as pdf

Related Stories

Engineering algae to make fuel instead of sugar

Dec 17, 2008

In pursuing cleaner energy there is such a thing as being too green. Unicellular microalgae, for instance, can be considered too green. In a paper in a special energy issue of Optics Express, the Optical Society's (OSA) ...

Plant gene for water efficiency found

Jul 11, 2005

ANU researchers have identified a gene that regulates the water efficiency of plants, the first to be discovered that mediates the process critical to plant survival, crop yield and vegetation dynamics. Dr Josette Masle, fro ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.