Stem cell therapy grows new blood vessels

Apr 06, 2009

Research led by David Hess of the Robarts Research Institute at The University of Western Ontario has identified how to use selected stem cells from bone marrow to grow new blood vessels to treat diseases such as peripheral artery disease. It's one of the severe complications often faced by people who've had diabetes for a long time. Reduced blood flow (ischemia) in their limbs can lead to resting pain, trouble with wound healing and in severe cases, amputation. The research is published in Blood.

Hess drew human and simultaneously isolated three different types of that co-ordinate together to form new . These are called pro-angiogenic stem cells. They were purified to remove any inflammatory or contaminated cells, and then injected into the circulation of mice which had one of their leg arteries ligated and removed. The researchers showed how these stem cells have a natural ability to hone in on the area of ischemia to induce blood vessel repair and improve blood flow. Hess says this research is clinically-applicable because they studied the function of human stem cells in immune-deficient mice.

The preclinical data from Hess' research was used by a biopharmaceutical company, Aldagen to receive FDA approval for a multi-center clinical trial now underway in Houston, Texas, involving 21 patients with end-stage peripheral artery disease.

"We can select the right stem cells from the patient's own bone marrow and put them back in the area of ischemia to allow these cells to coordinate the formation of new blood vessels." says Hess, a professor in physiology and pharmacology at Western's Schulich School of Medicine & Dentistry. "These principles could be applied not only to ischemic limbs, but to aid in the formation of new blood vessels in ischemic tissue anywhere in the body, for example after a stroke or heart attack."

Source: University of Western Ontario

Explore further: Missing protein restored in patients with muscular dystrophy

add to favorites email to friend print save as pdf

Related Stories

Drug can quickly mobilize an army of cells to repair injury

Sep 08, 2006

To speed healing at sites of injury - such as heart muscle after a heart attack or brain tissue after a stroke - doctors would like to be able to hasten the formation of new blood vessels. One promising approach is to "mobilize" ...

Molecule dictates how stem cells travel

Jan 14, 2006

U.S. researchers have defined a molecule that dictates how blood stem cells travel to the bone marrow and establish blood and immune cell production.

Bone marrow cells can heal nerves in diabetes model

Feb 04, 2009

Transplanting cells that replenish blood vessels can also restore nerve function in an animal model of diabetic neuropathy, Emory researchers have found. The results are described online this week in the journal Circulation.

Stem cells to be injected into the heart

Aug 26, 2005

The University of Pittsburgh Medical Center will begin a clinical trial to determine the feasibility of injecting a patient's own stem cells into the heart.

Recommended for you

Student seeks to improve pneumonia vaccines

16 hours ago

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

18 hours ago

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments : 0