Model tissue system reveals cellular communication via amino acids

Apr 03, 2009

A team of researchers from the Massachusetts General Hospital Center for Engineering in Medicine (MGH-CEM) has found the first evidence of cell-to-cell communication by amino acids, the building blocks of proteins, rather than by known protein signaling agents such as growth factors or cytokines. Their report will appear in an upcoming issue of the FASEB Journal and has been released online.

"We were taken by complete surprise," says Rohit Jindal, PhD, a postdoctoral fellow at MGH-CEM and the paper's lead author. "Past reports have implicated various growth factors and the extracellular matrix proteins secreted by other cell types in regulating hepatocyte behavior, but to the best of our knowledge, this is the first evidence that can communicate by changing local amino acid concentrations."

The authors describe the development of a three-dimensional model of tissue in which hepatocytes (liver cells) are embedded in a layer of collagen and covered with a layer of endothelial cells - the cells that line blood vessels, which permeate the liver. In this model system liver cells recovered their metabolic activity much faster than in previous models - in two days instead of a week or longer. The fundamental discovery was that the amino acid proline was responsible for this enhanced recovery. A building block of collagen, proline was secreted by the endothelial layer of the liver model, taken up by hepatocytes and used to synthesize new collagen, leading to faster recovery of hepatocyte activity.

"Identifying this amino-acid-mediated communication points to the importance of considering changes in metabolism while evaluating cell-to-cell communication," says Martin Yarmush, MD, PhD, director of the MGH-CEM and the paper's senior author. "Metabolic factors are gaining prominence in our understanding of a number of diseases, and establishing the contribution of different cell types to the metabolic milieu could provide new drug targets in the treatment of liver disease." Yarmush is the Helen Andrus Benedict Professor of Surgery and Bioengineering at Harvard Medical School (HMS).

Co-author Yaakov Nahmias, PhD, of MGH-CEM, adds, "It's not currently clear whether this mechanism occurs in living animals, but it could contribute to active liver remodeling during liver development or regeneration." Additional co-authors of the paper are Arno Tilles, MD, and Francois Berthiaume, PhD, both of the MGH-CEM. The work was supported by grants from the National Institutes of Health and Shriners Hospitals for Children.

Source: Massachusetts General Hospital (news : web)

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Grapefruit compound may help combat hepatitis C infection

Feb 04, 2008

A compound that naturally occurs in grapefruit and other citrus fruits may be able to block the secretion of hepatitis C virus (HCV) from infected cells, a process required to maintain chronic infection. A team of researchers ...

How did glycine significantly decrease liver injury?

Oct 31, 2008

The nonessential amino acid glycine has been shown to be anti-inflammatory in several animal injury models. Recent studies demonstrated that dietary glycine protected both the lung and liver against lethal doses of endotoxin ...

Recommended for you

The impact of bacteria in our guts

16 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

16 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

17 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0