Early family ties: No sponge in the human family tree

Apr 02, 2009

Since the days of Charles Darwin, researchers are interested in reconstructing the "Tree of Life", and in understanding the development of animal and plant species during their evolutionary history. In the case of vertebrates, this research has already come quite a long way. But there is still much debate about the relationships between the animal groups that made their apparation very early in evolutionary history, probably in the late Precambrian, some 650 million years ago.

An international research group led by LMU Munich Geobiology Professor Gert Wörheide and colleagues from France and Canada has now managed to explain the relationships between some of these very early animal groups with a high degree of confidence. In the most comprehensive study of its kind, the researchers show that all sponges descended from a unique sponge ancestor, who in turn was not the ancestor of all other animals. That means that humans did not descend from a sponge - like organism either, as some scientists have put forward. Moreover, the results also suggest that the only evolved once in animal history.

The most ancient animal groups (phyla) include the Porifera (sponges), Placozoa, Cnidaria, and Ctenophora (comb jellies). The sponges are extremely simply built, and have no organs. The placozoans also have a very simple structure. They have a flat, disk-shaped body, and no organs either. Comb jellies, the ctenophores, are life forms that resemble . The true jellyfish, however, are part of the cnidarians, a phylum that also includes corals and sea anemones. The exact relationships among these early animal groups are still controversial, as different research groups have often obtained conflicting results. In particular, results from morphological studies, which look for structural similarities between different organisms, frequently contradict the results from molecular biological studies. The latter explore the functions of genes, and deduce phylogenetic relationships from gene sequences.

Aiming to resolve these controversies, a group of international scientists led by Hervé Philippe (Université de Montréal, Canada), Gert Wörheide (LMU Munich, Germany) and Michael Manuel (University of Paris, France) performed the most comprehensive study to date and investigated 128 genes from a total of 55 species - including nine poriferans, eight cnidarians, three ctenophores and the single known species of placozoans. Their analyses were based on a relatively new approach called phylogenomics, which determines the evolutionary relationships of life forms by comparing large datasets of gene sequences. Together with biochemists, evolutionary and computational biologists from Germany, France and Canada, the team analyzed more than 30,000 amino acid positions. Using computer analyses, the researchers then estimated a phylogenetic tree that displays how related the studied animals are.

One of the most significant outcomes of this study is new evidence that all species of sponges are descendants of a single ancestor. On the other hand, Bilateria, which include worms, mollusks, insects, and vertebrates, did not descend directly from this "spongy" ancestor. "If the ancestral animal would have had a sponge-like organization or body, as some earlier molecular studies repeatedly claimed, then we would all be descendents of such sponge-like organisms," explains Wörheide. "This proposition generated a lot of attention in the past. But our results clearly disagree with it." The analyses also revealed that ctenophores and cnidarians most likely belong to a common group. "This group, the "coelenterates", is most closely related to the bilaterians," explains Wörheide. "Our results support, after much controversy, a hypothesis that was already formulated back in 1848."

The investigation also provides new insights into the development of individual organ systems. "Both coelenterates and bilaterians already have nerve cells. Their now corroborated close relationship also suggests that the nervous system developed only once in animal history," Wörheide states. And yet, another recent and less comprehensive study concerning the non-bilaterians proposed the unorthodox hypothesis that the comb jellies had already diverged from all other species even before the sponges. "Since the comb jellies already have nerve and muscle cells, this would suggest that these features developed several times independently in animal history, or that they were lost in sponges and placozoans," explains the LMU researcher.

This new study, which compared more evolutionarily ancient life forms than ever before, presents a stimulating framework for future studies. "Our results can now be used to explore how certain key features evolved among animals," says Wörheide. There is evidence, for example, that part of the genetic toolkit responsible for building the nervous system in other animals was already present in sponges. Similarly, eye-like sensory organs can already be detected in box jellyfish. "One of the goals of future studies will now be to find out how and when the genetic toolkit for the nervous system, muscles and sensory organs evolved in animal history," Wörheide concludes.

Source: Ludwig-Maximilians-Universität München

Explore further: A clear, molecular view of how human color vision evolved

add to favorites email to friend print save as pdf

Related Stories

Study rearranges some branches on animal tree of life

Mar 05, 2008

A study led by Brown University biologist Casey Dunn uses new genomics tools to answer old questions about animal evolution. The study is the most comprehensive animal phylogenomic research project to date, involving 40 million ...

And the first animal on Earth was a...

Apr 10, 2008

A new study mapping the evolutionary history of animals indicates that Earth's first animal--a mysterious creature whose characteristics can only be inferred from fossils and studies of living animals--was ...

New research touches a nerve

Aug 20, 2008

University of Queensland researchers have traced the origins of one of the most important steps in animal evolution – the development of nerves.

Origins of nervous system found in genes of sea sponge

Jun 06, 2007

Scientists at the University of California, Santa Barbara have discovered significant clues to the evolutionary origins of the nervous system by studying the genome of a sea sponge, a member of a group considered to be among ...

Recommended for you

Contrasting views of kin selection assessed

Dec 17, 2014

In an article to be published in the January issue of BioScience, two philosophers tackle one of the most divisive arguments in modern biology: the value of the theory of "kin selection."

Microbiome may have shaped early human populations

Dec 16, 2014

We humans have an exceptional age structure compared to other animals: Our children remain dependent on their parents for an unusually long period and our elderly live an extremely long time after they have ...

DNA sheds light on why largest lemurs disappeared

Dec 16, 2014

Ancient DNA extracted from the bones and teeth of giant lemurs that lived thousands of years ago in Madagascar may help explain why the giant lemurs went extinct. It also explains what factors make some surviving ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.