Scientists help decode mysterious green glow of the sea

Apr 01, 2009
Fireworms have four eyes (colored red), which allows high sensitivity to light for sensing moon phases light from mates. Credit: Scripps Institution of Oceanography, UC San Diego

Many longtime sailors have been mesmerized by the dazzling displays of green light often seen below the ocean surface in tropical seas. Now researchers at Scripps Institution of Oceanography at UC San Diego have uncovered key clues about the bioluminescent worms that produce the green glow and the biological mechanisms behind their light production.

Marine fireworms use bioluminescence to attract suitors in an undersea mating ritual. Research conducted by Scripps marine biologists Dimitri Deheyn and Michael Latz reveals that the worms also may use the light as a defensive measure. The report, published as the cover story of the current issue of the journal Invertebrate Biology, provides insights into the function of fireworm bioluminescence and moves scientists closer to identifying the molecular basis of the light.

"This is another step toward understanding the biology of the bioluminescence in fireworms, and it also brings us closer to isolating the protein that produces the light," said Deheyn, a scientist in the Marine Biology Research Division at Scripps. "If we understand how it is possible to keep light so stable for such a long time, it would provide opportunities to use that protein or reaction in biomedical, bioengineering and other fields—the same way other proteins have been used."

Experiments by Dimitri Deheyn and Michael Latz revealed green bioluminescence. Credit: Scripps Institution of Oceanography, UC San Diego

The fireworms used in the study (Odontosyllis phosphorea) are seafloor-dwelling animals that inhabit tropical and sub-tropical shallow coastal areas. During summer reproductive events known as "swarming," females secrete a luminous green mucus—which often draws the attention of human seafarers—before releasing gametes into the water. The bright glow attracts male fireworms, which also release gametes into the bright green cloud.

The precisely timed bioluminescent displays have been tracked like clockwork in Southern California, the Caribbean and Japan, peaking one to two days before each quarter moon phase, 30 to 40 minutes after sunset and lasting approximately 20 to 30 minutes.

Deheyn and Latz collected hundreds of specimens from San Diego's Mission Bay for their study, allowing them to not only examine live organisms but also produce the fireworms' luminous mucus for the first time in an experimental setting. The achievement provided a unique perspective and framework for examining the biology behind the worm's bioluminescent system.

A central finding described in the Invertebrate Biology paper is that the fireworms' bioluminescent light appears to play a role beyond attracting mates. The researchers found that juveniles produce bioluminescence as flashes, leading to a determination that the light also may serve as a defensive mechanism, intended to distract predators.

Green bioluminescence. Credit: Scripps Institution of Oceanography, UC San Diego

Through experiments that included hot and cold testing and oxygen depletion studies, Deheyn and Latz found that the bioluminescence is active in temperatures as low as minus 20 degrees Celsius (minus 4 degrees Fahrenheit). Higher temperatures, however, caused the bioluminescence to decay rapidly. The light also proved resilient in settings of low oxygen levels.

Based on these tests, the researchers believe the chemical process responsible for the bioluminescence may involve a specific light-producing protein—also called a "photoprotein." Further identification and isolation will be pursued in future studies.

"We were inspired by the work of earlier researchers who had studied the chemistry of fireworm bioluminescence, including Osamu Shimomura, one of the winners of the 2008 Nobel Prize in Chemistry for his discovery of green fluorescent protein from the jellyfish luminescent system," said Latz. "This new study showed that the fireworm bioluminescence also involves green fluorescence, originating from the oxidation product of the luminescent reaction."

Source: University of California - San Diego (news : web)

Explore further: Why do snakes flick their tongues?

add to favorites email to friend print save as pdf

Related Stories

Scientists discover fluorescence in key marine creature

Oct 30, 2007

Fluorescent proteins found in nature have been employed in a variety of scientific research purposes, from markers for tracing molecules in biomedicine to probes for testing environmental quality. Until now, ...

New light shed on marine luminescence

Feb 23, 2009

The phenomenon of light emission by living organisms, bioluminescence, is quite common, especially in marine species. It is known that light is generated by chemical reactions in which oxygen molecules play ...

Rare lightshow seen in deep ocean

Nov 17, 2006

Rare footage of marine creatures putting on deep sea 'lightshows' on the floor of the Atlantic Ocean has been captured by scientists using the latest technology. So many animals were squirting luminescence into the water ...

Deep-sea jelly uses glowing red lures to catch fish

Jul 08, 2005

As successful fishermen know, if you want to catch fish, you have to use the right bait or lure. This is true even in the deep sea, where scientists recently discovered a new species of jelly that attracts ...

Scientists detect 'milky sea' phenomena

Oct 17, 2005

Scientists at the Naval Research Laboratory's Marine Meteorology Division in Monterey, CA, (NRL-Monterey), working with researchers from Monterey Bay Aquarium Research Institute and the National Geophysical Data Center, presented ...

Recommended for you

Why do snakes flick their tongues?

1 hour ago

Many people think a snake's forked tongue is creepy. Every so often, the snake waves it around rapidly, then retracts it. Theories explaining the forked tongues of snakes have been around for thousands of ...

Boat noise impacts development and survival of sea hares

1 hour ago

While previous studies have shown that marine noise can affect animal movement and communication, with unknown ecological consequences, scientists from the Universities of Bristol and Exeter and the École Pratique des Hautes ...

User comments : 0