Study of cat diet leads to key nervous system repair discovery

Mar 30, 2009

Scientists studying a mysterious neurological affliction in cats have discovered a surprising ability of the central nervous system to repair itself and restore function.

In a study published today in the , a team of researchers from the University of Wisconsin-Madison reports that the restoration in of myelin — a fatty insulator of nerve fibers that degrades in a host of human central disorders, the most common of which is multiple sclerosis — can lead to functional recovery.

"The fundamental point of the study is that it proves unequivocally that extensive remyelination can lead to recovery from a severe neurological disorder," says Ian Duncan, the UW-Madison neuroscientist who led the research. "It indicates the profound ability of the central nervous system to repair itself."

The finding is important because it underscores the validity of strategies to reestablish myelin as a therapy for treating a range of severe neurological diseases associated with the loss or damage of myelin, but where the nerves themselves remain intact.

Myelin is a fatty substance that forms a sheath for nerve fibers, known as axons, and facilitates the conduction of nerve signals. Its loss through disease causes impairment of sensation, movement, cognition and other functions, depending on which nerves are affected.

The new study arose from a mysterious affliction of pregnant cats. A company testing the effects on growth and development in cats using diets that had been irradiated reported that some cats developed severe neurological dysfunction, including movement disorders, vision loss and paralysis. Taken off the diet, the cats recovered slowly, but eventually all lost functions were restored.

"After being on the diet for three to four months, the pregnant cats started to develop progressive neurological disease," says Duncan, a professor of medical sciences at the UW-Madison School of Veterinary Medicine and an authority on demyelinating diseases. "Cats put back on a normal diet recovered. It's a very puzzling demyelinating disease."

The afflicted cats were shown to have severe and widely distributed demyelination of the central nervous system, according to Duncan. And while the neurological symptoms exhibited by the cats are similar to those experienced by humans with demyelination disorders, the malady does not seem to be like any of the known myelin-related diseases of humans.

In cats removed from the diet, recovery was slow, but all of the previously demyelinated axons became remyelinated. The restored myelin sheaths, however, were not as thick as healthy myelin, Duncan notes.

"It's not normal, but from a physiological standpoint, the thin myelin membrane restores function," he says. "It's doing what it is supposed to do."

Knowing that the central nervous system retains the ability to forge new myelin sheaths anywhere the nerves themselves are preserved provides strong support for the idea that if myelin can be restored in diseases such as multiple sclerosis, it may be possible for patients to regain lost or impaired functions: "The key thing is that it absolutely confirms the notion that remyelinating strategies are clinically important," Duncan says.

The exact cause of the neurological affliction in the cats on the experimental diet is unknown, says Duncan, who was not involved in the original study of diet.

"We think it is extremely unlikely that [irradiated food] could become a human health problem," Duncan explains. "We think it is species specific. It's important to note these cats were fed a diet of irradiated food for a period of time."

Source: University of Wisconsin-Madison (news : web)

Explore further: Clot dissolver tPA's tardy twin could aid in stroke recovery

add to favorites email to friend print save as pdf

Related Stories

Researchers discover gene crucial for nerve cell insulation

Apr 16, 2007

Researchers funded by the National Institutes of Health have discovered how a defect in a single master gene disrupts the process by which several genes interact to create myelin, a fatty coating that covers nerve cells and ...

Recommended for you

Proteases help nerve cells to navigate

11 minutes ago

Our ability to move relies on the correct formation of connections between different nerve cells and between nerve and muscle cells. Growing axons of nerve cells are guided to their targets by signposts expressed ...

New test to help brain injury victims recover

23 hours ago

A dynamic new assessment for helping victims of trauma to the brain, including those suffering from progressive conditions such as dementia, has been developed by a clinical neuropsychologist at the University ...

See-through sensors open new window into the brain

Oct 21, 2014

(Medical Xpress)—Developing invisible implantable medical sensor arrays, a team of University of Wisconsin-Madison engineers has overcome a major technological hurdle in researchers' efforts to understand ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

brant
5 / 5 (1) Mar 30, 2009
"We think it is extremely unlikely that [irradiated food] could become a human health problem," Duncan explains. "We think it is species specific."



Well you just try it with your GMO oats to see if that is true, you wack job!!!
JerryPark
not rated yet Mar 31, 2009
I wish someone would do a study to determine the reason for the disorder. What nutritional deficit or poison is causing the cats the disorder? If irradiated food can do this to cats, I see no logical reason to discount the possibility in humans.
Ethelred
not rated yet Apr 11, 2009
The question here is why was that food being tested? Was the irradiation the reason for test or a just something that was done to all cat food they tested.

Ethelred