Evolutionary origin of bacterial chromosomes revealed

Mar 26, 2009

Researchers have unveiled the evolutionary origin of the different chromosomal architectures found in three species of Agrobacterium. A comprehensive comparison of the Agrobacterium sequence information with the genome sequences of other bacteria suggests a general model for how second chromosomes are formed in bacteria.

Agrobacteria are members of the Rhizobiaceae family, which also includes the benign, nitrogen-fixing organisms Rhizobium and Sinorhizobium. tumefaciens C58 is the workhorse of the plant biotechnology science and industry, thanks to its ability to insert its own DNA into host plants.

Members of the Rhizobiaceae have genetic architectures that span single , multiple chromosomes and circular DNA molecules (plasmids) of various sizes. The scientists used the sequence information of the genomes of three types of Agrobacterium (biovars), two of which were recently completed, and compared the sequences with those of different to shed light on the origin of the different chromosomal arrangements.

Most bacteria have only one chromosome. The Rhizobiaceae is an unusual bacterial family in that all of its members have either two chromosomes or one chromosome and very large plasmids. Until this study, it was not clear how such multichromosomal architectures had evolved.

João Setubal, associate professor at the Virginia Bioinformatics Institute and the Department of Computer Science at Virginia Tech, commented: "Thanks to the efforts of the Agrobacterium Consortium and the wider research community, we have sufficient sequence data available from different bacterial species to allow the inference of a general model for bacterial genome evolution. It appears that the transfer of genes from chromosomes to large plasmids mediates second chromosome formation."

"Examination of different genome sequences within the Rhizobiales family has revealed that gene migration is rife among the different replication units," said Steve Slater, professor at the University of Wisconsin. "Genes are not only migrating between organisms but they are also moving within the cell between chromosomes and plasmids. The genetic organization of even essential genes in bacteria is much more complex and fluid than has been imagined."

"The three Agrobacterium biovars for which we now have sequences - A. tumefaciens C58, A. radiobacter K84, and A. vitis S4 - provide an exciting snapshot of chromosome evolution in progress," said Brad Goodner, associate professor at Hiram College. "In Biovars I and III, Agrobacteria gene movements have produced second chromosomes derived from plasmids, while in the biovar II strain K84 the plasmid-based replicon has yet to reach second chromosome status."

Derek Wood, associate professor at Seattle Pacific University, remarked: "The findings in this work provide substantial new evidence that second chromosomes in all bacteria studied to date have plasmid origins. While other mechanisms leading to second chromosome formation seem possible, it is intriguing that this approach has been most productive."

"Because of the biotechnological importance of Agrobacterium, the sequence information provided by these strains should be an invaluable resource for Agrobacterium researchers and the wider life sciences research community," said Barry Goldman, Biotechnology Prospecting Lead at Monsanto.

More information: Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L, Suen G, Welch R, Almeida NF, Arnold F, Burton OT, Du Z, Ewing A, Godsy E, Heisel S, Houmiel KL, Jhaveri J, Lu J, Miller NM, Norton S, Chen Q, Phoolcharoen W, Ohlin V, Ondrusek D, Pride N, Stricklin SL, Sun J, Wheeler C, Wilson L, Zhu H, Wood DW (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multi-chromosome genomes in bacteria" Journal of Bacteriology. In press. doi:10.1128/JB.01779-08

Source: Virginia Tech

Explore further: Genomes of malaria-carrying mosquitoes sequenced

add to favorites email to friend print save as pdf

Related Stories

Human chromosome 3 is sequenced

Apr 27, 2006

The sequencing of human chromosome 3 at Baylor College represents the final stage of a multi-year project to sequence the human genome.

Scientists show how DNA repairs may reshape the genome

Aug 13, 2008

Researchers at Duke University Medical Center and at the National Institute of Environmental Health Sciences (NIEHS) have shown how broken sections of chromosomes can recombine to change genomes and spawn new species.

On the trail of rogue genetically modified pathogens

Mar 18, 2008

Bacteria can be used to engineer genetic modifications, thereby providing scientists with a tool to combat many challenges in areas from food production to drug discovery. However, this sophisticated technology can also be ...

Mouse to man: The story of chromosomes

Apr 19, 2006

U.S. scientists say sequencing human chromosome 17 and mouse chromosome 11 has offered unique insights into the evolution of the genome of higher mammals.

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

16 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.