New organic material may speed Internet access

Mar 15, 2009

The next time an overnight snow begins to fall, take two bricks and place them side by side a few inches apart in your yard.

In the morning, the bricks will be covered with snow and barely discernible. The will have filled every vacant space between and around the bricks.

What you will see, says Ivan Biaggio, resembles a phenomenon that, when it occurs at the smallest of scales on an integrated optical circuit, could hasten the day when the Internet works at superfast speeds.

Biaggio, an associate professor of physics at Lehigh University, is part of an international team of researchers that has developed an with an unprecedented combination of high optical quality and strong ability to mediate light-light interaction and has engineered the integration of this material with so it can be used in devices.

A description of this material was published on the Web site March 15.

The material, which is composed of small organic molecules with high nonlinear optical susceptibilities, mimics the behavior of the snowflakes covering the bricks when it is deposited into the slot, or gap, that separate silicon waveguides that control the propagation of on an integrated optical circuit.

Just as the snowflakes, being tiny and mobile, fill every empty space between the two bricks, Biaggio says, the molecules completely and homogeneously fill the slot between the waveguides. The slots measure only tens of nanometers wide; 1 nm is one one-billionth of a meter, or about the width of a dozen .

"We have been able to make by combining the molecules into a material that is perfectly transparent, flat, and free of any irregularities that would affect optical properties," says Biaggio.

The slot between the waveguides is the region where most of the light guided by the silicon propagates. By filling the slot, say Biaggio and his collaborators, the molecules add an ultra-fast all-optical switching capability to silicon circuitry, creating a new ability to perform the light-to-light interactions necessary for data processing in all-optical networks.

The nanophotonic device obtained in this way, says the group, has demonstrated the best all-optical demultiplexing rate yet recorded for a silicon-organic-hybrid device.

Multiplexing is the process by which multiple signals or data streams are combined and transmitted on a single channel, thus saving expensive bandwidth. Demultiplexing is the reverse process.

In tests, the novel hybrid device was able to extract every fourth bit of a 170-gigabit-per-second telecommunications data stream and to demultiplex the stream to 42.7 gigabits per second.

Biaggio's group is part of an international collaboration that includes scientists from the Institute of Photonics and Quantum Electronics at the University of Karlsruhe in Germany, the Photonics Research Group at Ghent University in Belgium, and the Laboratory for Organic Chemistry at the Swiss Federal Institute of Technology (ETH) in Zurich. Biaggio is affiliated with Lehigh's Center for Optical Technologies (COT). Another group member, Bweh Esembeson, earned a Ph.D. in physics from Lehigh earlier this year and is now an applications engineer with Thorlabs Inc. in New Jersey.

The silicon-organic-hybrid device and its breakthrough properties were presented for the first time as a postdeadline contribution at a meeting of the optical telecom industry last spring and at several other scientific conferences, and Biaggio's group published an article titled "A High-optical Quality Supramolecular Assembly for Third-order Integrated Nonlinear Optics" in the October 2008 issue of Advanced Materials.

A nonlinear optical answer to bandwidth demand

As Internet users demand greater bandwidth for ever faster communications, scientists and engineers are working to increase the speed at which information can be transmitted and routed along a network. They are hoping to achieve a major leap in velocity by designing circuits that rely solely on light-waves process data.

At present, data must be converted back and forth from optical signals to electrical signals for managing its progress within the optical telecommunication network. This limits the flexibility and the speed of optical telecommunication. All-optical circuits, experts say, could unleash the full potential of optical telecommunication and data processing.

All-optical circuits require nonlinear optical materials with good optical quality. A nonlinear optical response occurs in a material when the intensity of light alters the properties of the material through which light is passing, affecting, in turn, the manner in which the light propagates.

Biaggio's group is working with a small organic molecule called DDMEBT that possesses one of the strongest nonlinear optical responses yet observed when compared to its relatively small size. The molecule can condense from the vapor phase into a bulk material. The high, off-resonant bulk nonlinearity and large-scale homogeneity of this material, says Esembeson, represent a unique combination not often found in an organic material.

"Between high optical nonlinearity in a molecule and ability to actually fabricate a bulk plastic with excellent optical quality, there is always a compromise," he says.

The DDMEBT bulk material possesses 1,000 times the nonlinearity of silica glass. This organic material, however, is difficult to flexibly structure into nanoscale waveguides or other optical circuitry. Silicon, on the other hand, is structurally suited to the dense integration of components on photonic circuit devices. And silicon technology is mature and precise. It enables the creation of waveguides whose nanoscale flatness facilitates the control of light propagation.

"With pure silicon," says Biaggio, "you can build waveguides that enable you to control light beam propagation, but you cannot get ultrafast light-to-light interaction. Using only silicon, people have achieved a data switching rate of only 20 to 30 gigabits per second, and this is very slow.

"We need higher-speed switching to achieve a higher bit rate. Organic materials can do this, but they are not terribly good for building waveguides that control propagation of tightly confined light beams."

To combine the strengths of the DDMEBT and the silicon, Biaggio and his collaborators have fashioned silicon-organic hybrid (SOH) waveguides where silicon waveguides are covered with DDMEBT.

"We have combined the two approaches," he says. "We start from a silicon waveguide designed to guide the light between two silicon ridges . Then we use molecular beam deposition to fill the space between the ridges with the organic material [DDMEBT], creating a dense plastic with high optical quality and high nonlinearity where the light propagates.

"We combine the best of both technologies."

One of the group's singular achievements, he says, is the filling-in process.

"The key question was whether we could put the DDMEBT between the two silicon strips. There is a lot of research in this area, but no one had been able to make an organic material completely and homogeneously cover such a silicon structure, so that it spreads out and fills all the spaces. Homogeneity is necessary to prevent light scattering and losses.

We now achieved this by using a molecular structure that decreases inter-molecular interactions and promotes the formation of a homogeneous solid state. We then heated the molecules to a vapor phase and used a molecular beam to deposit the molecules on top of the silicon structure. The molecules were able to homogeneously fill the nanometer scale slot between the silicon ridges and to cover the whole structure we needed to cover.

"Our collaborators in Karlsruhe, who have state-of-the-art equipment for characterizing optical communications systems, were able to reliably switch individual bits out of a 170 gigabits per second data stream, which is impressive, but the organic material would be able to support even faster data rates"

The researchers summed up their achievements in one of their forthcoming articles:

"To the best of our knowledge, this is the first time that nonlinear SOH [silicon-organic hybrid] slot waveguides were used in high-speed optical communication systems. We believe that there is still a large potential for improving the conversion efficiency and the signal quality."

More information:

Source: Lehigh University

Explore further: High power laser sources at exotic wavelengths

add to favorites email to friend print save as pdf

Related Stories

Photonics: Pump up the bandwidth

Jun 21, 2006

U.S. scientists say they've developed an optical amplifier based on silicon that works across a wide range of frequencies.

A Broadband Light Amplifier on a Photonic Chip

Jul 06, 2006

Cornell University researchers have created a broadband light amplifier on a silicon chip, a major breakthrough in the quest to create photonic microchips. In such microchips, beams of light traveling through ...

Silicon optical fiber made practical

Oct 28, 2008

Scientists at Clemson University for the first time have been able to make a practical optical fiber with a silicon core, according to a new paper published in the current issue of the Optical Society's open-access journal, ...

Recommended for you

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

2.5 / 5 (2) Mar 15, 2009
Worst scientific analogy attempt i have ever seen.
not rated yet Mar 15, 2009
Indeed. What kind of snow do you think hes talking about, because if its in michigan, you wouldn't get the bricks back until may.
1 / 5 (1) Mar 15, 2009
The analogy is terrible yet who wouldn't want those speeds? Would be wonderful to eliminate those who complain about lag all the time... But how would the ISP's take it? They normally throttle people to 10% the speed they are paying for...

I have a 1 Mbp/s speed but I am throttled to 124 kbp/s.... Working out how packets are sent would be a nice fix.... Ping is very high when you have to bounce 6 miles north and then 4 miles south and then 7 miles northwest and 3 miles southeast.. There are too many hops and the grid is in error...
5 / 5 (1) Mar 15, 2009
Its not the internet slowing me down, its my local ISP throttling and not wanting people to stream video/tv/movies.
not rated yet Mar 23, 2009
But you have to at least admit the the analogy gets to the idea of what the scientists have achieved. Having created a proper mix of the silicon and DDMEBT and using vapor deposition to do it, the analogy works well. But in terms of explaining the actual idea that the scientists are trying to explain it does fall short. Unless of the course the bricks are purified nano-silicone and the snow is the DDMEBT.

More news stories

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

( —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...